Analytical Formula for the Relation between the Experimental and Theoretical Parameters of the Tsallis Spectral Line

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

An exact analytical formula is obtained that relates the experimental and theoretical parameters of the spectral line described by the Tsallis function, which includes the Gaussian, Lorentzian, line shapes intermediate between them, and super-Lorentzian as special cases. The procedure for the numerical calculation of the theoretical parameters of the line shape is studied by the example of electron spin resonance spectra. The effect of complicating experimental factors, including the noise and the analog signal digitization discreteness, on the accuracy of determining the theoretical Tsallian parameters is examined. It is shown that the proposed method for determining the theoretical parameters of the spectral line is not inferior in accuracy to the method for minimizing the root-mean-square error functional. It is predicted that the new approach can be used as an alternative to the available spectral line shape analysis techniques.

作者简介

L. Mendelevich

Moscow State University, Faculty of Physics

Email: yak@physics.msu.ru
Moscow, 119234 Russia

Yu. Koksharov

Moscow State University, Faculty of Physics; Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences; Shenzhen MSU‒BIT University

编辑信件的主要联系方式.
Email: yak@physics.msu.ru
Moscow, 119234 Russia; Moscow, 125009 Russia; Shenzhen, 518172 China

参考

  1. Poole C.P., Farach H.A. // Bull. Magn. Resonance. 1980. V. 1. № 4. P. 162.
  2. Bertrand P. Electron Paramagnetic Resonance Spectroscopy: Applications. Cham: Springer, 2020.
  3. Electron Paramagnetic Resonance: a Practitioner’s Toolkit / Eds. by M. Brustolon, G. Giamello. Hoboken Wiley, 2009.
  4. Stoneham A.M. // J. Phys. D: Appl. Phys. 1972. V. 5. № 3. P. 670.
  5. Posener D.W. // Australian J. Phys. 1959. V. 12. № 4. P. 184.
  6. Wertheim G.K., Butler M.A., West K.W., Buchanan D.N.E. // Rev. Sci. Instrum. 1974. V. 45. № 11. P. 1369.
  7. Maltempo M.M. // J. Magn. Resonance. 1986. V. 68. P. 102.
  8. Howarth D.F., Weil J.A., Zimpel Z. // J. Magn. Reonance. 2003. V. 161. P. 215.
  9. Sebby K.B., Walter E.D., Usselman R.J. et al. // J. Phys. Chem. B. 2011. V. 115. № 16. P. 4613.
  10. Жидомиров Г.М., Лебедев Я.С., Добряков С.Н. и др. Интерпретация сложных спектров ЭПР. М.: Наука, 1975.
  11. Edmonds A.M., Newton M.E., Martineau P.M. et al. // Phys. Rev. B. 2008. V. 77. № 24. Article No. 245205.
  12. Кокшаров Ю.А. // ФТТ. 2015. Т. 57. № 10. С. 1960.
  13. Scott E., Drake M., Reimer J.A. // J. Magn. Resonance. 2016. V. 264. P. 154.
  14. Стельмах В.Ф., Стригуцкий Л.В. // Журн. прикладной спектроскопии. 1998. Т. 65. № 2. С. 224.
  15. Mitchell D.G., Quine R.W., Tseinlin M. et al. // J. Phys. Chem. B. 2011. V. 115. № 24. P. 7986.
  16. Самарский А.А., Гулин А.В. Численные методы: Учеб. пособие для вузов. М.: Наука, 1989.
  17. Truong G.-W., Anstie J.D., May E.F. et al. // Nature Commun. 2015. V. 6. Article No. 8345. https://doi.org/10.1038/ncomms9345
  18. Ajoy A., Safvati B., Nazaryan N. et al. // Nature Commun. 2019. V. 10. Article No. 5160. https://doi.org/10.1038/s41467-019-13042-3
  19. Ивичева С.Е., Каргин Ю.Ф., Овченков Е.А. и др. // ФТТ. 2011. Т. 53. № 6. С. 1053.
  20. Гуляев Ю.В., Черепенин В.А., Вдовин В.А. и др. // РЭ. 2015. Т. 60. № 10. С. 1051. https://doi.org/10.7868/S0033849415100034

补充文件

附件文件
动作
1. JATS XML
2.

下载 (173KB)
3.

下载 (129KB)
4.

下载 (43KB)
5.

下载 (167KB)
6.

下载 (121KB)

版权所有 © Л.В. Менделевич, Ю.А. Кокшаров, 2023