Electrodynamic modeling of slot gratings by the generalized scattering matrix method – spherical wave decomposition

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

An algorithm is presented for the electrodynamic analysis of a two-dimensional waveguide slot array of finite dimensions. To solve the boundary value problem, the generalized scattering matrix method is used. The complex problem for a structure with large electrical dimensions is divided into two subproblems: wave scattering on one lattice element and the interaction of waves within the lattice. In accordance with this method, the electromagnetic field of a solitary lattice element is represented in the form of an expansion in incident and scattered spherical waves. The solution to the first subproblem is given by the scattering operator, which relates the amplitudes of the incident and scattered waves. The solution to the second subproblem yields an interaction matrix that relates the amplitudes of waves incident on the mth array element with the amplitudes of waves scattered by the nth element. Application of the scattering operator and interaction matrix to the analysed lattice leads to a system of linear algebraic equations for the amplitudes of the scattered waves. A non-periodic slot grating, focused in the Fresnel zone, containing up to a thousand elements is analysed. The obtained numerical results are in good agreement with the known behaviour of focused leaky wave gratings. Possible areas of application of the method are discussed.

Толық мәтін

Рұқсат жабық

Авторлар туралы

S. Bankov

Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: sbankov@yandex.ru
Ресей, Moscow, 125009

M. Duplenkova

Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

Email: sbankov@yandex.ru
Ресей, Moscow, 125009

Әдебиет тізімі

  1. Hines J.N., Rumsey V.H., Walter C.H. // Proc. IRE. 1954. V. 41. № 11. P. 1624.
  2. Stegen R.J. // IRE Trans. 1952. V. AP-1. № 1. P. 62.
  3. Simmons A., Giddings O., Diamond M., Gindsberg J. //1958 IRE Int. Convention Record. N.Y. 21–25 March 1966. N.Y.: IEEE. V. 11. P. 56.
  4. Hirokawa J., Ando M., Goto N. // Dig. 1992 IEEE A&P Society Int. Symp. Chicago. 18–25 Jun. N.Y.: 1992. V. 4. P. 2130.
  5. Akiyama A., Yamamoto T., Hirokawa J. et al. // IEE Proc. Microwaves, Antennas and Propagation. 2000. V. AP-147. № 2. Р. 134.
  6. Ettorre M., Sauleau R., Le Coq L. // IEEE Trans. 2011. V. AP-59. № 4. P. 1093.
  7. Buffi A., Serra A., Nepa P. et al. // IEEE Trans. 2010. V. AP-58. № 5. Р. 1536.
  8. Nguyen P.T., Abbosh A.M., Crozier S. // IEEE Trans. 2017. V. AP-65. № 7. Р. 3489.
  9. Li P.-F., Qu S.-W., Yang S., Nie Z.-P. // IEEE Trans. 2017. V. AP-65. № 9. P. 4607.
  10. Engheta N., Murphy W.D., Rokhlin V., Vassiliou M.S. // IEEE Trans. 1992. V. AP-40. № 6. Р. 634.
  11. Амитей Н., Галиндо В., Ву Ч. Теория и анализ фазированных антенных решеток. М.: Мир, 1974.
  12. Xiao G.B., Mao J.F., Yuan B. // IEEE Trans. 2008. V. AP-56. № 12. P. 3723.
  13. Lu W.B., Cui T.J., Qian Z.G. et al. // IEEE Trans. 2004. V. AP-52. № 11. Р. 3078.
  14. Matekovits L., Laza V. A., Vecchi G. // IEEE Trans. 2007. V. AP-55. №. 9. P. 2509.
  15. Rubio J., González M.A., Zapata J. // IEEE Antennas Wireless Propag. Lett. 2003. V. 2. P. 155.
  16. Rubio J., Gómez García A., Gómez Alcalá R. et al. // IEEE Trans. 2019. V. AP-67. № 12. P. 7379.
  17. Банков С.Е. // РЭ. 2020. Т. 65. № 1. С. 27.
  18. Stein S. // Quarterly Appl. Math. 1961. V. 19. № 1. Р. 15.
  19. Банков С.Е., Калошин В.А., Фролова Е.В. // РЭ. 2016. Т. 61. № 6. С. 587.
  20. Bankov S.E., Frolova E.V., Kalinichev V.I. // 2019 Antennas Design and Measurement Int. Conf. (ADMInC). St. Petersburg. 16–18 Oct. N.Y.: IEEE, 2019. P. 90.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Elementary radiator and waveguide-slot grating.

Жүктеу (159KB)
3. Fig. 2. Dependence of the variation of the transmission coefficient ∆T on the number of basis functions Nb.

Жүктеу (70KB)
4. Fig. 3. Dependence of the variation of the reflection coefficient ∆R on the parameter Nθ.

Жүктеу (71KB)
5. Fig. 4. Model 1 with end screen; 1–10 – ports.

Жүктеу (119KB)
6. Fig. 5. Model 2 with an infinite plane.

Жүктеу (129KB)
7. Fig. 6. Frequency dependences of the scattering parameters of the grating calculated by the OMR-RSV method (solid curves) and HFSS (dots); the reflection (1) and transmission (2) coefficients were determined for ports 3, 8.

Жүктеу (95KB)
8. Fig. 7. Normalized radiation patterns in the elevation plane for models 1 (a) and 2 (b), calculated using the OMR-RSV method (solid curves) and HFSS (dots).

Жүктеу (200KB)
9. Fig. 8. Normalized RP as a function of azimuth angle: according to the OMR-RSV method (solid curves) and HFSS (dots).

Жүктеу (97KB)
10. Fig. 9. The main beam of the pattern at frequencies f = 10 (1), 10.2 (2), 10.4 (3), 10.6 (4), 10.8 (5) and 11 GHz (6); according to the OMR-RSV method (solid curves) and HFSS (dots).

Жүктеу (127KB)
11. Fig. 10. Focused waveguide grating.

Жүктеу (81KB)
12. Fig. 11. Configuration of the focused grating.

Жүктеу (161KB)
13. Fig. 12. Frequency dependences of scattering parameters: reflection coefficient (1) and waveguide transmission coefficient (2).

Жүктеу (93KB)
14. Fig. 13. Normalized distributions of the electric field in the XOZ plane at frequencies of 9 (a), 10 (b), 11 GHz (c). The electric field is normalized to the maximum electric field strength at a frequency of 10 GHz.

Жүктеу (240KB)
15. Fig. 14. Frequency dependence of angle θₘ.

Жүктеу (81KB)
16. Fig. 15. Focal curve.

Жүктеу (86KB)
17. Fig. 16. Normalized distribution of the electric field at a frequency of 10 GHz in the YOZ plane for angles α₀= 20° (a), 10° (b), 0° (c).

Жүктеу (236KB)

© Russian Academy of Sciences, 2024