Hardware and software complex for highpower laser active elements internal temperature study based on ultrasonic probing

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The design and principle of operation of hardware and software complex for highpower laser active element’s temperature monitoring based on ultrasonic probing possibility research are described because of highpower laser active element heating may lead to amplified optical beam distortion as well as elements damage itself. Possible probing schemes are discussed. Methods sensibility and accuracy are estimated.

Full Text

Restricted Access

About the authors

A. D. Mansfeld

Institute of Applied Physics of the Russian Academy of Sciences

Email: volkov@ipfran.ru
Russian Federation, 46 Ul’yanov Str., Nizhny Novgorod, 603950

G. P. Volkov

Institute of Applied Physics of the Russian Academy of Sciences

Author for correspondence.
Email: volkov@ipfran.ru
Russian Federation, 46 Ul’yanov Str., Nizhny Novgorod, 603950

A. A. Kuzmin

Institute of Applied Physics of the Russian Academy of Sciences

Email: volkov@ipfran.ru
Russian Federation, 46 Ul’yanov Str., Nizhny Novgorod, 603950

A. V. Kupaev

Institute of Applied Physics of the Russian Academy of Sciences

Email: volkov@ipfran.ru
Russian Federation, 46 Ul’yanov Str., Nizhny Novgorod, 603950

A. G. Sanin

Institute of Applied Physics of the Russian Academy of Sciences

Email: volkov@ipfran.ru
Russian Federation, 46 Ul’yanov Str., Nizhny Novgorod, 603950

A. A. Shaykin

Institute of Applied Physics of the Russian Academy of Sciences

Email: volkov@ipfran.ru
Russian Federation, 46 Ul’yanov Str., Nizhny Novgorod, 603950

References

  1. Мак А.А., Сомс Л.Н., Фромзель В.А., Яшин В.Е. Лазеры на неодимовом стекле. М.: Наука, 1990.
  2. Кузьмин А. А., Лучинин А. Г., Потемкин А. К. и др. // Квантов. электрон. 2009. Т. 39. № 10. С. 895.
  3. Kuzmin A.A., Khazanov E.A., Shaykin A.A. // Opt. Express. 2011. V. 19. № 15. P. 14223. doi: 10.1364/OE.19.014223
  4. Kuzmin A.A., Silin D.E., Shaykin A.A. et al. // J. Opt. Soc. Amer. B. 2012. V. 29. №. 6. P. 1152. doi: 10.1364/JOSAB.29.001152
  5. Казаков В.В., Каменский В.А. // Приборы и техника эксперимента. 2023. №. 2. С. 110. doi: 10.31857/S0032816223010172
  6. Горальник А.С., Кульбицкая М.Н., Михайлов И.Г. и др. // Акуст. журн. 1972. Т. 18. № 3. С. 391.
  7. Авакянц Л.И., Бужинский И.М., Корягина Е.И., Суркова В.Ф. // Квантов. электрон. 1978. Т. 5. № 4. С. 725.
  8. Галахова О.П., Колтик Е.Д., Кравченко С.А. Основы фазометрии. Л.: Энергия, 1976.
  9. Бражников Н.И. Ультразвуковая фазометрия. М.: Энергия, 1968.
  10. Lozhkarev V.V., Freidman G.I., Ginzburg V.N. et al. // Laser Phys. Lett. 2007. V. 4. №. 6. P. 421. doi: 10.1002/lapl.200710008

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The location of the active element in the quantron and two options (a, b) for the placement of ultrasound sensors (1–4).

Download (61KB)
3. Fig. 2. Block diagram of the device: PA – power amplifier, PF – bandpass filter, OGR – signal limiter, F – input bandpass filter of the high-frequency UHF amplifier, PD – phase detector, UVH – low-pass filter sample and hold device (LPF), SI1, SI2 – strobe pulses, ADC – analog-to-digital converter, t° – temperature sensor.

Download (133KB)
4. Fig. 3. Oscillograms: a – pulse passed through the AE; b – heterodyne signal; c – video pulse from the output of the phase detector when the phase of the received signal changes; d – strobe pulse.

Download (69KB)
5. Fig. 4. Screenshot of the signal registration program with oscillograms of phase changes (curves 1 and 3) for two directions of propagation of ultrasonic beams and temperature from an external temperature sensor (curve 2) when the temperature in the thermostat changes during transverse probing of the AE with a longitudinal wave (see Fig. 1a).

Download (248KB)
6. Fig. 5. Scheme of probing (a) along the AE directly (solid line) and with wave reflection from the AE boundaries (dashed line): 1 – AE, 2 – cooling flask, 3 – receiving and transmitting ultrasonic sensors; typical oscillograms (b) of received ultrasonic signals for flat sensors (Pl) and for sensors on prisms (Pr): 1 – direct longitudinal wave, 2 – transverse reflected wave.

Download (97KB)
7. Fig. 6. Measurement in a thermostat during heating and cooling of the AE: 1 – phase of the transmitted ultrasonic pulse, 2 – temperature on the surface of the AE.

Download (52KB)
8. Fig. 7. Oscillogram of the change in the phase of the signal that passed through the active element during the operation of the laser installation.

Download (59KB)
9. Fig. 8. Scheme of AE probing in cross-section (a) and oscillograms of ultrasonic signals during longitudinal wave probing (b): the first pulse, I1, is probing (leaking into the receiver), the second, I2, has passed through the AE diameter (1) and through the chord (2).

Download (130KB)
10. Fig. 9. Typical cases of temperature distribution along the diameter in the cross section of the AE: a – immediately after heating as a result of the pump pulse, b – after temperature equalization.

Download (48KB)

Copyright (c) 2024 Russian Academy of Sciences