Development of the W-band traveling-wave tube with sheet electron beam and staggered double-grating slow wave structure

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this work, results of development of a W-band O-type traveling-wave tube with sheet electron beam are presented. The staggered double-grating slow-wave stricture with wideband input/output coupling structures was designed and optimized and its high-frequency electromagnetic parameters were calculated. The results of 3D particle-in-cell simulation of beam-wave interaction in the TWT are presented. Gain over 30 dB in the 25-GHz frequency band was obtained. A sample of an electron gun with an impregnated cathode, focusing electrode, and anode, providing the formation of a sheet electron beam with a high-aspect ratio and a current of 0.1 A, was designed and fabricated. The design of the vacuum window is presented, and the technology of its fabrication is discussed.

Full Text

Restricted Access

About the authors

V. N. Titov

V.A. Kotelnikov Institute of Radio Engineering and Electronics RAS; Saratov State University

Email: torgashovra@gmail.com

Saratov Branch V.A. Kotelnikov Institute of Radio Engineering and Electronics RAS

Russian Federation, 38 Zelenaya St., Saratov, 410019; 83 Astrakhanskaya St., Saratov, 410012

I. A. Chistyakov

V.A. Kotelnikov Institute of Radio Engineering and Electronics RAS; “RPE “Almaz”

Email: torgashovra@gmail.com

Saratov Branch V.A. Kotelnikov Institute of Radio Engineering and Electronics RAS

Russian Federation, 38 Zelenaya St., Saratov, 410019; 1 Panfilova St., Saratov, 410033

I. A. Navrotsky

V.A. Kotelnikov Institute of Radio Engineering and Electronics RAS; “RPE “Almaz”

Email: torgashovra@gmail.com

Saratov Branch V.A. Kotelnikov Institute of Radio Engineering and Electronics RAS

Russian Federation, 38 Zelenaya St., Saratov, 410019; 1 Panfilova St., Saratov, 410033

D. N. Zolotykh

V.A. Kotelnikov Institute of Radio Engineering and Electronics RAS; “RPE “Almaz”

Email: torgashovra@gmail.com

Saratov Branch V.A. Kotelnikov Institute of Radio Engineering and Electronics RAS

Russian Federation, 38 Zelenaya St., Saratov, 410019; 1 Panfilova St., Saratov, 410033

R. A. Torgashov

V.A. Kotelnikov Institute of Radio Engineering and Electronics RAS; Saratov State University

Author for correspondence.
Email: torgashovra@gmail.com

Saratov Branch V.A. Kotelnikov Institute of Radio Engineering and Electronics RAS

Russian Federation, 38 Zelenaya St., Saratov, 410019; 83 Astrakhanskaya St., Saratov, 410012

О. R. Abramov

Saratov State University

Email: torgashovra@gmail.com
Russian Federation, 83 Astrakhanskaya St., Saratov, 410012

E. V. Gorshkova

“RPE “Almaz”

Email: torgashovra@gmail.com
Russian Federation, 1 Panfilova St., Saratov, 410033

V. V. Emelyanov

V.A. Kotelnikov Institute of Radio Engineering and Electronics RAS; “RPE “Almaz”

Email: torgashovra@gmail.com

Saratov Branch V.A. Kotelnikov Institute of Radio Engineering and Electronics RAS

Russian Federation, 38 Zelenaya St., Saratov, 410019; 1 Panfilova St., Saratov, 410033

N. M. Ryskin

V.A. Kotelnikov Institute of Radio Engineering and Electronics RAS; Saratov State University

Email: torgashovra@gmail.com

Saratov Branch V.A. Kotelnikov Institute of Radio Engineering and Electronics RAS

Russian Federation, 38 Zelenaya St., Saratov, 410019; 83 Astrakhanskaya St., Saratov, 410012

References

  1. Григорьев А.Д. Терагерцевая электроника. М.: Физматлит, 2021.
  2. Zhang X.-C., Xu J. Introduction to THz Wave Photonics. N.Y.: Springer, 2010. https://doi.org/10.1007/978-1-4419-0978-7
  3. Rieh J.-S. Introduction to Terahertz Electronics. N.Y.: Springer, 2021. https://doi.org/10.1007/978-3-030-51842-4
  4. THz Communications. Paving the Way Towards Wireless Tbps / Eds T.Kürner, D.M. Mittleman, T. Nagatsuma. Springer Series in Optical Sciences. V. 234. N.Y.: Springer, 2022. https://doi.org/10.1007/978-3-030-73738-2
  5. Paoloni C., Gamzina D., Letizia R. et al. // J. Electromag. Waves Appl. 2021. V. 35. № 5. P. 567. https://doi.org/10.1080/09205071.2020.1848643
  6. Shin Y.M., Baig A., Barnett L.R. et al. // IEEE Trans. 2011. V. ED-58. № 9. P. 3213. https://doi.org/10.1109/TED.2011.2159842
  7. Baig A., Gamzina D., Kimura T. et al. // IEEE Trans. 2017. V. ED-64. № 5. P. 2390. https://doi.org/10.1109/TED.2017.2682159
  8. Karetnikova T.A., Rozhnev A.G., Ryskin N.M. et al. // IEEE Trans. 2018. V. ED-65. № 6. P. 2129. https://doi.org/10.1109/TED.2017.2787960
  9. Shin Y.-M., Stockwell B., Begum R., et al. // IEEE Trans. 2023. V. ED-70. № 6. P. 2738. https://doi.org/10.1109/TED.2023.3241834
  10. Zhang C., Pan P., Cai J. et al. // IEEE Trans. 2023. V. ED-70. № 6. P. 2798. https://doi.org/10.1109/TED.2022.3233291
  11. Yang R., Xu J., Yue L. et al. // IEEE Trans. 2022. V. ED-69. № 5. P. 2656. https://doi.org/10.1109/TED.2022.3161255
  12. Рожнев А.Г., Рыскин Н.М., Каретникова Т.А. и др. // Изв. вузов. Радиофизика. 2013. Т. 56. № 8—9. С. 601.
  13. Каретникова Т.А., Рожнев А.Г., Рыскин Н.М. и др. // РЭ. 2016. Т. 61. № 1. С. 54. https://doi.org/10.1134/S1064226915120116
  14. Давидович М.В. // ЖТФ. 2019. Т. 89. № 2. С. 280. https://doi.org/10.21883/JTF.2019.02.47084.80-18
  15. Shin Y.-M., Barnett L.R., Luhmann N.C. // IEEE Trans. 2009. V. ED-56. № 5. P. 706. https://doi.org/10.1109/TED.2009.2015404
  16. Wang J., Shu G., Liu G. et al. // IEEE Trans. 2016. V. ED-63. № 1. P. 504. https://doi.org/10.1109/TED.2015.2502620
  17. Srivastava V., Srivastava N. // 3rd Intern. Conf. and Workshops on Recent Advances and Innovations in Engineering (ICRAIE). Jaipur, India. 22–25 Nov. N.Y.: IEEE, 2018. P. 1. https://doi.org/10.1109/ICRAIE.2018.8710392
  18. Srivastava V. // IETE Tech. Rev. 2018. V. 36. № 5. P. 501. https://doi.org/10.1080/02564602.2018.1509738
  19. Zheng Y., Gamzina D., Himes L. et al. // IEEE 2020. V. THz-10. № 4. P. 411. https://doi.org/10.1109/TTHZ.2020.2995826
  20. Nguyen K.T., Pasour J.A., Antonsen T.M. et al. // IEEE Trans. 2009. V. ED56. № 5. P. 744. https://doi.org/10.1109/TED.2009.2015420
  21. Ruan C., Wang S., Han Y., et al. // IEEE Trans. 2014. V. ED-61. № 6. P. 1643. https://doi.org/10.1109/TED.2014.2299286
  22. Navrotsky I.A., Burtsev A.A., Emelyanov V.V. et al. // IEEE Trans. 2021. V. ED-68. № 2. P. 798. https://doi.org/10.1109/TED.2020.3041425
  23. Zheng Y., Gamzina D., Popovic B., Luhmann N.C. // IEEE Trans. 2016. V. ED-63. № 11. P. 4466. https://doi.org/10.1109/TED.2016.2606322
  24. Yang L., Wang J., Li H., et al. // IEEE Trans. 2017. V. TPS-45. № 5. P. 805. https://doi.org/10.1109/TPS.2017.2688480
  25. Zhang C., Pan P., Chen X. et al. // Electronics. 2021. V. 10. Р. 3051. https://doi.org/10.3390/electronics10243051
  26. Yin P.C., Xu J., Yang R.C. et al. // IEEE Electron Device Lett. 2022. V. 43. № 8. P. 1343. https://doi.org/10.1109/LED.2022.3187160
  27. Cook A.M., Joye C.D., Kimura T. et al. // IEEE Trans. 2013. V. ED-60. № 3. P. 1257. https://doi.org/10.1109/TED.2012.2232929
  28. Сазонов В.П., Терехина З.Н., Лямзин В.М. // Обзоры по электронной технике. Сер. Электроника СВЧ. 1972. Вып. 3(8). С. 1.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of a dual comb type ZS.

Download (110KB)
3. Fig. 2. Results of modeling the electrodynamic characteristics of the ZS: a — dispersion characteristics of the symmetric (1), antisymmetric (2) mode and the electron beam at a voltage of 12.7 kV (3); b — dependence of the coupling resistance K on the frequency for the working +1st spatial harmonic.

Download (96KB)
4. Fig. 3. Design of a broadband energy input/output matching device (a) and S-parameters of the ES (b).

Download (132KB)
5. Fig. 4. Dependence of the linear gain coefficient G on frequency (a) and dependence of the output power P on frequency for different values ​​of input power (b): 10 (1), 20 (2), 50 (3), 100 mW (4).

Download (123KB)
6. Fig. 5. Three-dimensional computer model of the electron gun (a) and a photograph of the experimental model (b): 1 - cathode; 2 - focusing electrode; 3 - anode; 4 - electron flow. The colors show the electron energy, changing from 0 to 12.7 keV.

Download (135KB)
7. Fig. 6. Experimentally measured VAC of the gun.

Download (45KB)
8. Fig. 7. Computer model of a vacuum window in the form of an inclined mica plate in a waveguide.

Download (54KB)
9. Fig. 8. Dependences of the VSWR of the vacuum window on the frequency with a mica plate thickness of 85 µm and an inclination angle of 60° (1), 65° (2), 70° (3) and 75° (4).

Download (89KB)
10. Fig. 9. Photograph of a vacuum-tight “mica plate–metal” connection: 1 — mica disk, 2 — titanium ring, 3 — blank made of MD-15 pseudo-alloy.

Download (225KB)
11. Fig. 10. Dependences of the VSWR on the frequency for a mica disk 85 µm thick, normally located in the waveguide: 1 — experimental measurements; 2 — results of calculation using formula (3).

Download (69KB)

Copyright (c) 2024 Russian Academy of Sciences