Bi-periodic linear antenna array

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

А series-fed antenna containing two parallel linear arrays in a common aperture is proposed in this letter. Elements of the arrays are elementary resonant radiators. Proposed antenna can operate both in a dual-frequency mode and in a mode with one extended frequency range. Such an antenna in the dual-band mode provides a maximum gain in a given direction in two separate frequency ranges. The convergence of the frequency ranges forms one common extended frequency range. An approximate approach for synthesizing the antenna is proposed. Using the HFSS system, several variants of a bi-periodic slotted waveguide antenna array are investigated. Numerical modeling confirms the results of the approximate theory. It is shown that the proposed array can operate in both specified modes, which significantly expands the functionality of antennas of this type.

Texto integral

Acesso é fechado

Sobre autores

S. Bankov

Kotelnikov Institut of Radioengineering and Electronics RAS

Autor responsável pela correspondência
Email: sbankov@yandex.ru
Rússia, Mokhovaya Str. 11, build.7, Moscow, 125009

M. Duplenkova

Kotelnikov Institut of Radioengineering and Electronics RAS

Email: sbankov@yandex.ru
Rússia, Mokhovaya Str. 11, build.7, Moscow, 125009

Bibliografia

  1. Уолтер К.Х. Антенны бегущей волны. М: Энергия, 1970.
  2. Casula G. A., Mazzarella G., Montisci G., Muntoni G. // Electronics. 2021. V. 10. № 11. С. 1311.
  3. Hirokawa J., Miyagawa T., Ando M., Goto N. // Dig. IEEE Antennas and Propagation Society Intern. Symp. Chicago. 18-25Jun. 1992. N.Y.: IEEE. 1992. V.3. P. 1471.
  4. Casula G. A., Montisci G., Mazzarell, G. et al. // J. Electromagnetic Waves and Appl. 2013. V. 27. № 17. P. 2155.
  5. Kang Y., Noh E., Kim K. // IEEE Antennas and Wireless Propag. Lett. 2020. V. 19. № 8. P. 1395.
  6. Mishra G., Sharma S. K., Chieh J. C. S. // IEEE Trans. 2020. V. АР-68. № 12. P. 7947.
  7. Yi H., Li L., Han J., Shi Y. // IEEE Access. 2019. V. 7. P. 111466.
  8. Chaudhuri S., Kshetrimayum R.S., Sonkar R.K., Mishra M. // Electron. Lett. 2019. V. 55. № 20. P. 1071.
  9. Hirokawa J., Ando M., Goto N. et al. // IEEE Trans. 1995. V. VT-44. № 4. P. 749.
  10. Банков С.Е. // РЭ. 2004. Т. 49. № 6. С. 701.
  11. Goto N. Single-Layered Radial Line Slot Antenna. US Patent № 5175561. Publ. December 29,1992.
  12. Cheng Y.J., Hong W., Fan K., Wu Y. // IEEE Trans. 2011.V. AP-59. № 1. P. 40.
  13. Qiu L., Xiao K., Chai S. L. et al. // IEEE Trans. 2016. V. AP-64. № 11. P. 4639.
  14. Zhang L., Li L., Yi H. // 2018 Cross Strait Quad-Regional Radio Science and Wireless Technology Conf. (CSQRWC). Xuzhou. 21-24 Jul. N.Y.: IEEE, 2018. Paper No. 8455559.
  15. Ishimaru A., Bernard G. // IRE Trans. 1962. V. AP-10. № 2. P. 151.
  16. Банков С.Е., Ан Дж. // РЭ. 2007. Т. 52. № 8. С. 932.
  17. Банков С.Е. Антенные решетки с последовательным питанием. М.: Физматлит, 2013.
  18. Баскаков С.И. Радиотехнические цепи с распределенными параметрами. М.: Радио и связь, 1980.
  19. Сазонов Д.М. Антенны и устройства СВЧ. М: Мир, 1989.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Equivalent circuit of the ARPP: 1, 2,…N are the numbers of elementary emitters.

Baixar (29KB)
3. Fig. 2. Frequency dependence of the radiation angle of the ARPP: non-resonant (1) and resonant (2) emitters.

Baixar (63KB)
4. Fig. 3. Frequency dependence of wave attenuation in ARPP.

Baixar (57KB)
5. Fig. 4. Frequency dependence of the control and measurement equipment of the ARPP with resonant emitters.

Baixar (50KB)
6. Fig. 5. Schematic representation of a biperiodic ARPP.

Baixar (31KB)
7. Fig. 6. Frequency dependence of the ARPP instrumentation in dual-frequency mode.

Baixar (69KB)
8. Fig. 7. Normalized radiation patterns of a biperiodic array at frequencies of 10.8 (1) and 12.2 GHz (2).

Baixar (81KB)
9. Fig. 8. Frequency dependence of the instrumentation in single-range mode.

Baixar (58KB)
10. Fig. 9. Normalized radiation patterns of a biperiodic array at frequencies of 11.18 (1) and 11.78 GHz (2).

Baixar (75KB)
11. Fig. 10. Models of a biperiodic array for electrodynamic modeling: with a flat screen (a) and a flat horn (b).

Baixar (88KB)
12. Fig. 11. Fragment of the lattice.

Baixar (42KB)
13. Fig. 12. Frequency dependence of the scattering parameters of a grating with a screen in dual-range mode: reflection (1) and transmission (2) coefficients.

Baixar (76KB)
14. Fig. 13. Frequency response of the amplifier array with a screen in dual-band mode.

Baixar (66KB)
15. Fig. 14. Directional patterns of the array with a screen in the XOZ plane (a) and in the azimuthal plane (b) in dual-band mode at frequencies of 9.9 (1) and 11.3 GHz (2).

Baixar (109KB)
16. Fig. 15. Frequency response of the amplifier array with a horn in dual-band mode.

Baixar (65KB)
17. Fig. 16. Directional patterns of an array with a horn in the XOZ plane (a) and in the azimuthal plane (b) in dual-band mode at frequencies of 9.8 (1) and 10.6 GHz (2).

Baixar (112KB)
18. Fig. 17. Frequency response of the amplifier array with a horn in single-range mode.

Baixar (53KB)
19. Fig. 18. Directional patterns of an array with a horn in the XOZ plane (a) and in the azimuthal plane (b) in single-band mode at frequencies of 9.4 (1) and 10.1 GHz (2).

Baixar (117KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024