Method for monitoring background concentration of methane over large areas using solar radiation
- Authors: Grigor’evskiy V.I.1, Tezadov Y.A.1, Pavel’ev A.A.1
-
Affiliations:
- Fryazino Branch Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences
- Issue: Vol 69, No 1 (2024)
- Pages: 69-75
- Section: СТАТИСТИЧЕСКАЯ ФИЗИКА
- URL: https://kazanmedjournal.ru/0033-8494/article/view/650720
- DOI: https://doi.org/10.31857/S0033849424010059
- EDN: https://elibrary.ru/LADMQY
- ID: 650720
Cite item
Abstract
The results of measurements of the background concentration of methane in the atmosphere using the Sun as a radiation source are presented. It was found that, along with random errors, it is necessary to take into account the systematic error caused by the influence of extraneous factors on measurements of the methane background concentration when sounding at small angles to the horizon, when the length of the path increases noticeably. It is assumed that a possible influence on the magnitude of the systematic error is the scattering of light by aerosols and other impurity particles present in the atmosphere. The proposed method for monitoring the methane background makes it possible to carry out measurements over long periods of time over large areas with a relative accuracy of a few percent.
Keywords
Full Text

About the authors
V. I. Grigor’evskiy
Fryazino Branch Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences
Author for correspondence.
Email: vig248@rambler.ru
Russian Federation, Fryazino, Moscow region, 141190
Ya. A. Tezadov
Fryazino Branch Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences
Email: vig248@rambler.ru
Russian Federation, Fryazino, Moscow region, 141190
A. A. Pavel’ev
Fryazino Branch Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences
Email: vig248@rambler.ru
Russian Federation, Fryazino, Moscow region, 141190
References
- Siddans R., Knappett D., Waterfall A. et al. // Atmos. Meas. Tech. 2016. V. 290. № 11. P. 1. https://doi. org/10.5194/amt-10-4135-2017
- Weidmann D., Hoffmann A., Macleod N. et al. // Remote Sens. 2017. V. 9. № 1073. P. 1. https://doi. org/10.3390/rs9101073
- Григорьевский В.И., Тезадов Я.А. // Космич. исслед. 2020. T. 58. № 5. C. 369. https://doi. org/10.31857/S00234206200500274.
- Арефьев В.Н., Акименко Р.М., Упэнэк Л.Б. // Изв. РАН. Физика атмосферы и океана. 2015. Т. 51. № 6. С. 1. https://doi. org/10.7868/S0002351515060036
- Xiong X., Barnet C., Maddy E. et al. // J. Geophys. Research. 2008. V. 113. № 7. P. 1. https://doi. org/10.1029/2007JG000500
- Григорьевский В.И., Садовников В.П., Элбакидзе А.В. // Измерит. техника. 2022. № 3. C. 40. https://doi. org/10.32446/0368-1025it.2022-3-40-44
- Родионова Н.В. // Тез. докл. Всерос. науч. конф. “Современные проблемы дистанционного зондирования, радиолокации, распространения и дифракции волн”. Муром. 28–30 июня 2022. Изд-во Владим. гос. ун-та, 2022. C. 349. https://doi. org/10.24412/2304-0297-2022-1-349-356
- Бажин Н.М. Метан в окружающей среде. Новосибирск: ГПНТБ СО РАН, 2010.
- Chandra N., Venkataramani S., Lal S. et al. // Atmospheric Environment. 2019. V. 202. P. 41. https://doi. org/10.1016/j.atmosenv.2019.01.007
- Svirejeva-Hopkins A., Schellnhuber H.J., Pomaz V.L. // Ecological Modelling. 2004. V. 173. № 23. P. 295.https://doi.org/10.1016/j.ecolmodel.2003.09.022
- Григорьевский В.И., Тезадов Я.А. // РЭ. 2021. Т. 66. № 7. С. 654. https://doi. org/10.31857/S0033849421070044
- Самуленков Д.А., Сапунов М.В., Мельникова И.Н. // Совр. проблемы дистанционного зондирования Земли из космоса. 2020. Т. 17. № 3. С. 223. https://doi. org/10.21046/2070-7401-2020-17-3-223-230
- Береснев С.А., Грязин В.И. Физика атмосферных аэрозолей. Курс лекций. Екатеринбург: Изд-во Урал. ун-та, 2008.
- Yakovlev S., Sadovnikov S., Kharchenko O. et al. // Atmosphere. 2020. V. 11. № 70. P. 1. https://doi. org/10.3390/atmos11010070
Supplementary files
