Method for monitoring background concentration of methane over large areas using solar radiation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of measurements of the background concentration of methane in the atmosphere using the Sun as a radiation source are presented. It was found that, along with random errors, it is necessary to take into account the systematic error caused by the influence of extraneous factors on measurements of the methane background concentration when sounding at small angles to the horizon, when the length of the path increases noticeably. It is assumed that a possible influence on the magnitude of the systematic error is the scattering of light by aerosols and other impurity particles present in the atmosphere. The proposed method for monitoring the methane background makes it possible to carry out measurements over long periods of time over large areas with a relative accuracy of a few percent.

Full Text

Restricted Access

About the authors

V. I. Grigor’evskiy

Fryazino Branch Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

Author for correspondence.
Email: vig248@rambler.ru
Russian Federation, Fryazino, Moscow region, 141190

Ya. A. Tezadov

Fryazino Branch Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

Email: vig248@rambler.ru
Russian Federation, Fryazino, Moscow region, 141190

A. A. Pavel’ev

Fryazino Branch Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

Email: vig248@rambler.ru
Russian Federation, Fryazino, Moscow region, 141190

References

  1. Siddans R., Knappett D., Waterfall A. et al. // Atmos. Meas. Tech. 2016. V. 290. № 11. P. 1. https://doi. org/10.5194/amt-10-4135-2017
  2. Weidmann D., Hoffmann A., Macleod N. et al. // Remote Sens. 2017. V. 9. № 1073. P. 1. https://doi. org/10.3390/rs9101073
  3. Григорьевский В.И., Тезадов Я.А. // Космич. исслед. 2020. T. 58. № 5. C. 369. https://doi. org/10.31857/S00234206200500274.
  4. Арефьев В.Н., Акименко Р.М., Упэнэк Л.Б. // Изв. РАН. Физика атмосферы и океана. 2015. Т. 51. № 6. С. 1. https://doi. org/10.7868/S0002351515060036
  5. Xiong X., Barnet C., Maddy E. et al. // J. Geophys. Research. 2008. V. 113. № 7. P. 1. https://doi. org/10.1029/2007JG000500
  6. Григорьевский В.И., Садовников В.П., Элбакидзе А.В. // Измерит. техника. 2022. № 3. C. 40. https://doi. org/10.32446/0368-1025it.2022-3-40-44
  7. Родионова Н.В. // Тез. докл. Всерос. науч. конф. “Современные проблемы дистанционного зондирования, радиолокации, распространения и дифракции волн”. Муром. 28–30 июня 2022. Изд-во Владим. гос. ун-та, 2022. C. 349. https://doi. org/10.24412/2304-0297-2022-1-349-356
  8. Бажин Н.М. Метан в окружающей среде. Новосибирск: ГПНТБ СО РАН, 2010.
  9. Chandra N., Venkataramani S., Lal S. et al. // Atmospheric Environment. 2019. V. 202. P. 41. https://doi. org/10.1016/j.atmosenv.2019.01.007
  10. Svirejeva-Hopkins A., Schellnhuber H.J., Pomaz V.L. // Ecological Modelling. 2004. V. 173. № 23. P. 295.https://doi.org/10.1016/j.ecolmodel.2003.09.022
  11. Григорьевский В.И., Тезадов Я.А. // РЭ. 2021. Т. 66. № 7. С. 654. https://doi. org/10.31857/S0033849421070044
  12. Самуленков Д.А., Сапунов М.В., Мельникова И.Н. // Совр. проблемы дистанционного зондирования Земли из космоса. 2020. Т. 17. № 3. С. 223. https://doi. org/10.21046/2070-7401-2020-17-3-223-230
  13. Береснев С.А., Грязин В.И. Физика атмосферных аэрозолей. Курс лекций. Екатеринбург: Изд-во Урал. ун-та, 2008.
  14. Yakovlev S., Sadovnikov S., Kharchenko O. et al. // Atmosphere. 2020. V. 11. № 70. P. 1. https://doi. org/10.3390/atmos11010070

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Block diagram of the experimental setup: 1 – optical spectrum analyzer, 2 – fiber collimator, 3 – fiber cable, 4 – spectral composition meter, 5 – support and rotary device.

Download (46KB)
3. Fig. 2. Absorption spectra of methane and water: A – water absorption lines, B and C – R3 and R4 methane absorption lines according to the HITRAN database.

Download (73KB)
4. Fig. 3. Calculated (1) and measured (2) dependences of the deposited methane layer on the slant range.

Download (46KB)
5. Fig. 4. Dependence of the background concentration of methane in the surface layer of the atmosphere on the azimuthal observation angle α.

Download (64KB)

Copyright (c) 2024 Russian Academy of Sciences