Fluctuations of correlation estimations in digital communications on the base of noise random signals with time Window

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A statistical analysis of correlation fluctuations during information transmission using spectrum spreading based on continuous noise signals with spectral modulation was carried out. Discrete information is introduced as a result of the interference of the reference noise signal and the delayed noise signal, which is modulated by binary symbols of opposite sign. A numerical calculation of correlation and spectral characteristics during information transmission in a channel with additive Gaussian white noise was carried out. An asymptotic limitation has been discovered for the deviation of correlation fluctuations due to intra-system interference. The possibility of reducing fluctuations of the correlation effect when transmitting information based on continuous noise signals with time windows is shown.

Full Text

Restricted Access

About the authors

V. I. Kalinin

Frayzino branch Kotel’nikov Institute of Radio-engineering and Electronics of RAS

Author for correspondence.
Email: val.kalinin@mail.ru
Russian Federation, Fryazino Moscow region, 141190

O. A. Byshevski-Konopko

Frayzino branch Kotel’nikov Institute of Radio-engineering and Electronics of RAS

Email: val.kalinin@mail.ru
Russian Federation, Fryazino Moscow region, 141190

References

  1. Феер K. Беспроводная цифровая связь: методы модуляции и расширения спектра. М.: Радио и связь, 2000.
  2. Kennedy M.P., Kolumban G., Kis G., Jako Z. // IEEE Trans. 2000. V. CS-I-47. № 12. P. 1673.
  3. Kolumban G. // IEEE Trans. 2000. V. CS-I-47. № 12. P. 1692.
  4. Назаров Л.Е., Зудилин А.С., Каевицер В.И., Смольянинов И.В. // РЭ. 2021. Т. 66. № 1. С. 62. https://doi.org/10.31857/s003384942101006x
  5. Narayanan R.M., Chuang J. // Electron. Lett. 2007. V. 43. № 22. Р. 1211.
  6. Bloch M.R. // IEEE Trans. 2016. V. IT-62. № 5. P. 2334. https://doi.org/10.1109/TIT.2016.2530089
  7. Калинин В.И. // Письма в ЖТФ. 2005. Т. 31. № 21. С. 58.
  8. Sobers T.V., Bash B.A., Guha S. et al. // IEEE Trans. 2017. V. WC-16. № 9. P. 6193. https://doi. org/10.1109/TWC.2017.2720736.
  9. Кузьмин Л.В., Гриневич А.В., Ушаков М.Д. // Письма в ЖТФ. 2018. Т. 44. № 16. С. 48. https://doi. org/10.21883/PJTF.2018.16.46476.17392
  10. Lipski M. V., Kompella S., Narayanan R. M. // IEEE Trans. 2021. V. AES-57, № 2. P. 1227. https://doi. org/10.1109/TAES.2020.3040059
  11. Агейкин Н.А., Грачев В.И., Рябенков В.И., Колесов В.В. // РЭНСИТ: Радиоэлектроника. Наносистемы. Информ. технологии. 2022. Т. 14. № 1. С. 47. https://doi.org/10.17725/rensit.2022.14.047.
  12. Калинин В.И., Чапурский В.В. // РЭ. 2015. Т. 60. № 10. С. 1025. https://doi. org/10.7868/S0033849415100046
  13. Дмитриев А.С., Мохсени Т.И., Сьерра-Теран К.М. // РЭ. 2018. Т. 63. № 10. С. 1. https://doi. org/10.1134/S0033849418100078
  14. Калинин В.И. // Письма в ЖТФ. 2018. Т. 44. № 24. С. 45. https://doi. org/10.21883/PJTF.2018.24.47029.17301
  15. Калинин В.И., Чапурский В.В. // Успехи совр. радиоэлектроники. 2015. № 8. С. 38.
  16. Калинин В.И. // Журн. радиоэлектроники. 2018. № 9. http://jre.cplire.ru/jre/sep18/5/text.pdfhttps://doi.org/10.30898/1684-1719.2018.9.5
  17. Калинин В.И., Радченко Д.Е., Черепенин В.А. // Радиотехника. 2015. № 8. С. 84.
  18. Калинин В.И., Радченко Д.Е., Черепенин В.А. // Электромагнитные волны и электрон. системы. 2016. Т. 21. № 3. С. 40.
  19. Kiyono K., Tsujimoto Yu. // Physica A: Statistical Mechanics and its Applications. 2016. V. 462. P. 807. https://doi.org/10.1016/j.physa.2016.06.129
  20. Павлова О.Н., Павлов А.Н. // Письма в ЖТФ. 2021. Т. 47. № 9. С. 52. https://doi. org/10.21883/PJTF.2021.09.50910.18653
  21. Бендат Дж., Пирсол А. Применения корреляционного и спектрального анализа. М.: Мир, 1983.
  22. Proakis J., Manolakis D. Digital Signal Processing. L.: Pearson, 2006.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Functional diagrams of the transmitter (a) and receiver (b) in the information transmission system with opposite noise signals: 1 – noise signal source; 2 – bandpass filter; 3, 4 – delay; 5 – integrator; 6 – threshold device.

Download (80KB)
3. Fig. 2. Time realization of the total noise signal in the communication line during transmission of opposite information bits.

Download (123KB)
4. Fig. 3. Shift of the interference pattern in the spectrum when transmitting positive “+1” (a) and negative “–1” (b) symbols.

Download (263KB)
5. Fig. 4. Impulse response of an ideal filter (a) and a bandpass filter with a finite impulse response (b); m is the sample number.

Download (199KB)
6. Fig. 5. Fluctuations of correlation estimates (thick lines) relative to the true values ​​in the bit stream bₗ = ±1 in the absence (a) and under the influence (b) of external interference q = 1; l is the bit number.

Download (158KB)
7. Fig. 6. Deviation of fluctuations of the correlation effect depending on the signal-to-noise ratio q in the channel with different bases B for signals with a rectangular spectrum (curves with triangles) and signals with a time window (curves with circles): B = 50 (1), 100 (2), 500 (3), 1000 (4).

Download (182KB)

Copyright (c) 2024 Russian Academy of Sciences