A combination of asymptotic and numerical methods in calculating the characteristics of a convex quasi-periodic phased antenna array with account the interaction of elements of an arbitrary type

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Approximate asymptotic expressions are obtained for the partial radiating elements pattern and the active reflection coefficient of a large-sized quasi-periodic convex phased array antenna (PAA), using as a basis the results of a numerical solution for the electromagnetic field in a single PAA cell under periodic boundary conditions on the lateral surface of the cell. These expressions can be used to create mathematical software for modelling such phased arrays, taking into account the interaction of radiating elements, based on a combination of direct numerical methods, such as the finite element method, to analyse the field in a single cell of the phased array with the calculation of the characteristics of the phased array as a whole using analytical asymptotic expressions. Numerical results of applying the method are presented for calculating the characteristics of multi-element spherical phased array of slot radiating elements and conical phased array of slot and director radiating elements.

全文:

受限制的访问

作者简介

M. Indenbom

All-Russian Research Institute of Radio Engineering

编辑信件的主要联系方式.
Email: mindenbom@mail.ru
俄罗斯联邦, st. Bolshaya Pochtovaya, 22, Moscow, 105082

参考

  1. Воскресенский Д.И., Пономарев Л.И., Филиппов В.С. Выпуклые сканирующие антенны. М.: Сов. радио, 1978.
  2. Josefsson L., Persson P. Conformal Array Antenna Theory and Design. Hoboken: John Wiley and Sons Inc., 2006.
  3. Caronti A., Celentano S., Immediata S. et al. // 2016 IEEE Int. Symp. on Phased Array Systems and Technology (PAST). Waltham.15-8 Oct. N.Y.: IEEE, 2016. Article No. 7832540.
  4. Инденбом М.В. Антенные решетки подвижных обзорных РЛС. Теория, расчет, конструкции. М.: Радиотехника, 2015.
  5. Инденбом М.В. // РЭ. Т. 67. № 6. 2022. С. 546.
  6. Инденбом М.В. // Антенны. 2017. Вып. 3. С. 3.
  7. Инденбом М.В. // Журн. радиоэлектроники. № 9. 2020. https://doi.org/10.30898/1684-1719.2020.9.2
  8. Инденбом М.В. // Антенны. 2018. Вып. 1. С. 9.
  9. Jin J. Finite Element Method in Electromagnetics. N.Y.: Willey, 2002.
  10. Kogon A.J., Sarris C.D. // IEEE Antennas & Propagation Magazine. 2022. № 3. P. 59.
  11. Fulton C.J., Maikamali A. // IEEE Antennas and Propagation Magazine. 2015. № 3. P. 132.
  12. Фельд Я.Н., Бененсон Л.С. Основы теории антенн. М.: Дрофа, 2007.
  13. Инденбом М.В., Филиппов В.С. // Изв. вузов. Радиоэлектроника. Т. 21. № 2. 1978. С. 22.
  14. Инденбом М.В., Филиппов В.С. // РЭ. 1978. Т. 23. № 8. С. 1616.
  15. Федорюк М.В. Асимптотика. Интегралы и ряды. М.: Наука, 1987.
  16. Анютин А.П., Боровиков В.А. Равномерные асимптотики интегралов от быстроосциллирующих функций с особенностями внеэкспоненциального множителя. Препринт АН СССР: Ин-т радиотехники и электроники. № 42 (414). 1984.
  17. Орлов Ю.И. // РЭ. Т. 21. № 1. 1976. С. 62.
  18. Инденбом М.В., Скуратов В.А. // Радиотехника. 2021. № 5. С. 117.
  19. Крюковский А.С., Лукин Д.С., Палкин Е.А., Растягаев Д.С. // РЭ. 2006. Т. 51. № 10. С. 1155.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Schematic representation of a convex phased array.

下载 (72KB)
3. Fig. 2. Single cell of a convex phased array.

下载 (137KB)
4. Fig. 3. Partial diagram of the axial slot element of a spherical phased array located at ϑₙ = 72.3°, in sections θ = 44.3° (a) and θ = 50° (b) for φ-polarization (1, 2) and θ-polarization (3, 4): 1, 3 – according to formula (32); 2, 4 – according to formula (32) at ResM = 0.

下载 (247KB)
5. Fig. 4. Partial diagram of the axial slot element of the spherical antenna array, located at ϑₙ = 72.3° (dᵩ = 0.986λ), for θ = 90° (a) and θ = 60° (b) for φ-polarization (1, 3, 5) and θ-polarization (2, 4, 6): 1, 2 – spatial wave (8); 3, 4 – asymptotics of integrals (32); 5, 6 – asymptotics and DFT (46).

下载 (195KB)
6. Fig. 5. Partial diagram of the azimuthal slot element of a conical antenna array at θ = 90° (a) and θ = 60° (b) for φ-polarization (1, 2) and θ-polarization (3, 4): 1, 2 – rigorous method; 3, 4 – asymptotics and DFT (46).

下载 (164KB)
7. Fig. 6. Partial diagram of the axial director radiator of a conical phased array with a triangular grid (section θ = 90°); aₙ = 11.5λ for φ-polarization (1, 2) and θ-polarization (3, 4): 1, 3 – spatial wave (8); 2, 4 – asymptotics and DFT (46).

下载 (96KB)
8. Fig. 7. Effective reflection coefficient of the conical phased array of axial director radiators at θ₀ = 90°: curve 1 – aₙ = 11.5λ (dᵩ = 1.2λ); curve 2 – aₙ = 9.2λ (dᵩ = λ).

下载 (116KB)

版权所有 © Russian Academy of Sciences, 2024