Mathematical model of a signal of radar on the base of antenna array with two-dimensional frequency scanning

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An antenna array with series excitation and its application as part of a radar with linear frequency modulation are considered. An analysis of an array consisting of Na parallel one-dimensional sub-arrays with series excitation forming a two-dimensional radiating array and coupling waveguides connecting the output of the n-th sub-array with the input of n+1 sub-array through 180° waveguide turns is presented. An approximate model of the antenna is proposed, which makes it possible to determine its main technical characteristics. Using the developed model, the time characteristics of the signal at the output of an ultrahigh frequency unit of a homodyne radar with linear frequency modulation are investigated. The dependences of the array quality indicators on the scattering parameters of elementary radiators and waveguide 180° turns are analyzed, and the technical requirements for them are formulated. It is shown that the radar provides scanning in the sector of azimuth angles ± 40° and ± 10° in the elevation with a frequency deviation in the 2 GHz band.

Full Text

Restricted Access

About the authors

S. E. Bankov

Kotelnikov’s Institute of Radio Engineering and Electronics

Author for correspondence.
Email: sbankov@yandex.ru
Russian Federation, Mokhovaya str, 11, bild. 7, Moscow, 125000

A. A. Komarov

Kotelnikov’s Institute of Radio Engineering and Electronics

Email: sbankov@yandex.ru
Russian Federation, Mokhovaya str, 11, bild. 7, Moscow, 125000

M. S. Mikhailov

Kotelnikov’s Institute of Radio Engineering and Electronics

Email: sbankov@yandex.ru
Russian Federation, Mokhovaya str, 11, bild. 7, Moscow, 125000

References

  1. Банков С.Е. Антенные решетки с последовательным питанием. М.: Физматлит, 2013.
  2. Stegen R.J. // Trans. IRE Professional Group on Antennas and Propagation. 1952. V. 1. № 1. P. 62.
  3. Rotman W., Oliner A.A. // IRE Trans. 1959. V. MTT-7. № 1. P. 134.
  4. McCormick G. // IRE Trans. 1958. V. AP-6. № 1. P. 26.
  5. Rotman W. // IRE Trans. 1958. V. AP-6. № 1. Р. 96.
  6. Ettorre M., Sauleau R., Le Coq L., Bodereau F. // IEEE Trans. 2014. V. AP-62. № 14. P. 1991.
  7. Cheng Н., Hong W., Wu K. et al. // IEEE Trans. 2008. V. AP-56. № 9. P. 3055.
  8. Albani M., Ettorre M., Maci S. et al. // Euroр. Conf. on Antennas and Propagation (EuCAP) 2007. Edinburgh. 11–16 Nov. 2007. N.Y.: IEEE, 2007. Article No. 445897. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4458971
  9. Хансен Р.С. Сканирующие антенны СВЧ. М.: Сов. радио, 1971. Т. 3.
  10. Банков С.Е., Фролова Е.В. // РЭ. 2017. Т. 62. № 9. С. 833.
  11. Елисеев С.Е., Гусевский В.И., Терехов В.А. и др. Радиолокационная система ближнего действия для предупреждения столкновения с препятствиями маневрирующих на аэродроме летательных аппаратов Пат. РФ № 2192653. Опубл. офиц. бюл. “Изобретения. Полезные модели” № 31 от 10.11.2002.
  12. Баскаков А.И., Жутяева Т.С., Лукашенко Ю.И. Локационные методы исследования объектов и сред. М.: ИЦ “Академия”, 2011.
  13. Проектирование фазированных антенных решеток / Под ред. Д.И. Воскресенского. М.: Радиотехника, 2012.
  14. Сазонов Д.М. Антенны и устройства СВЧ. М.: Высш. школа, 1988.
  15. Уолтер К. Антенны бегущей волны. М.: Энергия, 1970.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structural diagram of the ARPW with a two-dimensional emergency situation.

Download (51KB)
3. Fig. 2. Homodyne radar diagram: G generator, A antenna, CM mixer, Y Y-circulator.

Download (7KB)
4. Fig. 3. Equivalent circuit of a slit.

Download (6KB)
5. Fig. 4. Frequency dependence of the elevation angle (a) and azimuth angle (b).

Download (58KB)
6. Fig. 5. Frequency dependence of the elevation angle after excluding two-beam sections.

Download (27KB)
7. Fig. 6. Scanning diagram of the ARPV.

Download (26KB)
8. Fig. 7. Frequency dependences of the reflection (1) and transmission (2) coefficients of the ARPW at Rm = 0.05 (a) and Rm = 0.025 (b).

Download (47KB)
9. Fig. 8. Frequency dependences of the reflection coefficient (1) and elevation angle (2) for the ARPW with coupling waveguides filled with a medium with ε = 1.3.

Download (28KB)
10. Fig. 9. Envelope of the location signal at θt = 25°, t = 60°.

Download (26KB)
11. Fig. 10. Fragment of the ARPV location signal with communication waveguides filled with a medium with ε = 1.3.

Download (30KB)
12. Fig. 11. Envelope of the location signal at θt = 35°, t = 60°.

Download (25KB)

Copyright (c) 2024 Russian Academy of Sciences