Comparison of Theoretical and Real Throughput of PD-NOMA

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this paper, we compare theoretical and real throughput in PD-NOMA systems. The theoretical throughput was obtained using ideal signal structures according to Shannon’s theorem while the practical one was obtained with allowance for the use of a bank of signal-code structures from the 3GPP LTE standard. An approach for estimating the real throughput of PD-NOMA is described. The error value between the theoretical and real throughput of PD-NOMA is determined.

About the authors

Y. V. Kryukov

Tomsk State University of Control Systems and Radioelectronics

Email: kryukov.tusur@gmail.com
40 Lenina Prospect, Tomsk, 634034 Russia

D. A. Pokamestov

Tomsk State University of Control Systems and Radioelectronics

Email: kryukov.tusur@gmail.com
40 Lenina Prospect, Tomsk, 634034 Russia

E. V. Rogozhnikov

Tomsk State University of Control Systems and Radioelectronics

Author for correspondence.
Email: kryukov.tusur@gmail.com
40 Lenina Prospect, Tomsk, 634034 Russia

References

  1. Cover T. // IEEE Trans. 1972. V. IF-18. № 1. P. 2.
  2. Benjebbour A., Saito Y., Kishiyama Y. et al. // Proc. 2013 IEEE Int. Symp. on Intelligent Signal Processing and Communication Systems. Naha. 12–15 Nov. N.Y.: IEEE, 2013. P. 770.
  3. Liu X., Wang J., Zhao N. et al. // IEEE Wireless Commun. Lett. 2019. V. 8. № 3. P. 965.
  4. Zhang J., Tao X., Wu H. et al. // IEEE Internet of Things J. 2020. V. 7. № 7. P. 6369.
  5. Ding Z., Schober R., Poor H. // IEEE Commun. Lett. 2020. V. 24. № 11. P. 2373.
  6. Wang J., Li Y., Ji C. et al. // IEEE Trans. 2020. V. COM-68. № 4. P. 2293.
  7. Dai L., Wang B., Ding Z. et al. // IEEE Commun. Surveys & Tutorials. 2018. V. 20. № 3. P. 2294.
  8. Saito Y., Benjebbour A., Kishiyama Y., Nakamura T. // Proc. 2013 IEEE 24th Annual Int. Symp. on Personal, Indoor and Mobile Radio Commun. (PIMRC). London. 8–11 Sept. N.Y.: IEEE, 2013. P. 611.
  9. Ding Z., Lei X., Karagiannidis K. et al. // IEEE J. Selected Areas Commun. 2017. V. 35. № 10. P. 2181.
  10. Benjebbour A., Saito K., Li A. et al. // 2015 Int. Conf. on Wireless Networks and Mobile Commun.(WINCOM). Marrakesh. 20–23 Oct. N.Y.: IEEE, 2015. Article № 7381343.
  11. Liu C.H., Liang D.C. // IEEE Trans. 2018. V. WC-17. № 5. P. 3524.
  12. Higuchi K., Benjebbour A. // IEICE Trans. 2015. V. COM-98. № 3. P 403.
  13. Kryukov Y., Pokamestov D., Abenov R. et al. // J. Phys: Conf. Series. 2021. V. 2134. № 1. P. 12023.
  14. Abdel Moniem M., Gasser S., El-Mahallawy M. et al. // Applied Sciences. 2019. V. 9. № 15. P. 3022.
  15. Kim S., Kim H., Hong D. // Proc. 2018 29th Annual Int. Symp. on Personal, Indoor and Mobile Radio Commun. (RIMRC). Bologna. 9–12 Sept. N.Y.: IEEE, 2018. Article № 8580995.
  16. Hsieh H.-Y., Yang M.-J., Wang C.-H. // Proc. 2016 IEEE 27th Annual Int. Symp. on Personal, Indoor, and Mobile Radio Commun. (RIMRC). Valencia. 4–8 Sept. N.Y.: IEEE, 2016. Article № 7794796.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (54KB)
3.

Download (1MB)
4.

Download (131KB)

Copyright (c) 2022 Я.В. Крюков, Д.А. Покаместов, Е.В. Рогожников