Electrodynamic Modeling of a Morgan Double-Layer Lens

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A multibeam antenna based on a Morgan double-layer lens in the form of plane waveguides coupled via a frequency-periodic array is investigated. The lens synthesis problems are considered. The analytical model of coupled plane waveguides is constructed. The model uses the equivalent boundary conditions. It is verified using the electromagnetic modeling in the HFSS system. An approximate electromagnetic model of the antenna is proposed. The model is based on the representation of the structure electromagnetic field in
the form of radial waves of coupled plane waveguides of the fundamental type. It is shown that, in the doublelayer lens, the effect of its shading by irradiators is substantially attenuated. This fact makes it possible to form the system of rays with fan-shaped patterns, which provides for the space view in the azimuth angle sector of 360°. The possibility of formation of narrow rays with the low level of the side and back irradiation is demonstrated.

About the authors

S. E. Bankov

Kotelnikov Institute of Radio- engineering and Electronics, Russian Academy of Sciences

Email: sbankov@yandex.ru
Moscow, 125009 Russia

M. D. Duplenkova

Kotelnikov Institute of Radio- engineering and Electronics, Russian Academy of Sciences

Author for correspondence.
Email: sbankov@yandex.ru
Moscow, 125009 Russia

References

  1. Rotman W. // IRE Trans. AP. 1958. V. 6. № 1. P. 96.
  2. Adachi S., Rudduck R., Walter C. // IRE Trans. AP. 1961. V. 9. № 4. P. 353.
  3. Банков С.Е. Интегральная СВЧ-оптика. М.: Физматлит, 2018.
  4. Cheng Y.J., Hong W., Fan Ke Wu Y. // IEEE Trans. 2011. V. AP-59. № 1. P. 40.
  5. Albani M., Ettorre M., Maci S. et al. // First Europ. Conf. on Antennas and Propagation. Nice. 6–10 Nov. 2006. https://doi.org/10.1109/eucap.2006.4585023
  6. Ettorre M., Sauleau R., Le Coq L. // IEEE Trans. 2011. V. AP-59. № 4. P. 1093.
  7. Wan X., Shen X., Luo Y., Cui T.J. // Laser & Photonics Rev. 2014. V. 8. № 5. P. 757.
  8. Kwon D.-H., Werner D.H. // IEEE Antennas Prop. Mag. 2010. V. 52, № 1. P. 24.
  9. Quevedo-Teruel O., Tang W., Hao Y. // Opt. Lett. 2012. V. 37. № 23. P. 4850.
  10. Kong F., Wu B.-I., Kong J.A. et al. // Appl. Phys. Lett. 2007. V. 91. P. 253509. https://doi.org/10.1063/1.2826283
  11. Rahm M., Cummer S.A., Schurig D. et al. // Phys. Rev. Lett. 2008. V.100. № 6. P. 063903.
  12. Prado D.R., Osipov A.V., Quevedo-Teruel O. // Opt. Lett. 2015. V. 40. № 6. P. 926.
  13. Tehrani B.K., Bahr R.A., Su W. et al. // IEEE MTT-S Intern. Microwave Symp., 4–9 June 2017, Honololu, USA. P. 1756. https://doi.org/10.1109/MWSYM.2017.8058985
  14. Ахияров В.В., Калошин В.А., Никитин Е.А. // Журн. радиоэлектроники. 2014. № 1. http://jre.cplire.ru/ jre/jan14/18/text.pdf.
  15. Clapp R.E. // IEEE Trans. 1984. V. AP-32. № 7. P. 661.
  16. Банков С.Е. // Журн. радиоэлектроники. 2012. № 12. http://jre.cplire.ru/jre/dec12/6/text.html.
  17. Morgan S.P. // J. Appl. Phys. 1958. V. 29. № 9. P. 1358.
  18. Bankov S.E. // 7th All-Russian Microwave Conf. Moscow. 25–27 November. 2020. P. 171. https://ieeexplore.ieee.org/document/9312300
  19. Банков С.Е., Дупленкова М.Д. // РЭ. 2022. Т. 67. № 5. С. 419.
  20. Сазонов Д.М. Антенны и устройства СВЧ. М.: Высш. школа, 1988.
  21. Бaнкoв C.E. // PЭ. 2018. T. 63. № 4. C. 301.
  22. Марков Г.Т., Чаплин А.Ф. Возбуждение электромагнитных волн. М.: Радио и связь, 1983.
  23. Вайнштейн Л.А. Электромагнитные волны. М.: Радио и связь, 1988.

Supplementary files


Copyright (c) 2023 С.Е. Банков, М.Д. Дупленкова