Magnetic Isolated Vircator with a Magnetic Mirror on a Prelimit Electron Beam: Features of Beam Dynamics and Superhigh-Frequency Characteristics

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A relativistic magnetically isolated vircator with a magnetic mirror on a prelimit electron beam is proposed. Its computer simulation has been carried out. The phase dynamics of an electron beam in a vircator has been studied. It is shown that a number of virtual cathodes appear in the beam after the beam is reflected from the magnetic mirror. The output microwave characteristics are calculated: the average power and the spectral composition of generation, containing a set of narrow spectral lines and their harmonics. The effect of the mirror ratio on the average output power and on the frequencies of the spectral lines is studied. It is found that the power increases with the growth of the mirror ratio. The frequencies of some spectral lines increase with the mirror ratio, while the frequencies of other lines do not depend on this ratio.

About the authors

A. E. Dubinov

Russian Federal Nuclear Center All-Russian Research Institute of Experimental Physics; Sarov Institute of Physics and Technology

Email: dubinov-ae@yandex.ru
Sarov, Nizhny Novgorod oblast, 607188 Russia; Sarov, Nizhny Novgorod oblast, 607189 Russia

G. N. Kolesov

Sarov Institute of Physics and Technology

Email: kolesov.german@yandex.ru
Sarov, Nizhny Novgorod oblast, 607189 Russia

V. D. Selemir

Russian Federal Nuclear Center All-Russian Research Institute of Experimental Physics

Email: kolesov.german@yandex.ru
Sarov, Nizhny Novgorod oblast, 607188 Russia

V. P. Tarakanov

Russian Federal Nuclear Center All-Russian Research Institute of Experimental Physics; National Research Nuclear University MEPhI

Author for correspondence.
Email: kolesov.german@yandex.ru
Moscow, 125412 Russia; Moscow, 115409 Russia

References

  1. Platt R., Anderson B., Christofferson J. et al. // Appl. Phys. Lett. 1989. V. 54. № 13. P. 1215. https://doi.org/10.1063/1.100719
  2. Huttlin G.A., Bushell M.S., Conrad D.B. et al. // IEEE Trans. 1990. V. PS-18. № 3. P. 618. https://doi.org/10.1109/27.55935
  3. Sze H., Price D., Harteneck B. // J. Appl. Phys. 1990. V. 67. № 5. P. 2278. https://doi.org/10.1063/1.345521
  4. Селемир В.Д., Дубинов А.Е., Степанов Н.В. и др. // Антенны. 2001. № 3. С. 6.
  5. Диденко А.Н., Арзин А.П., Жерлицын А.Г. и др. // Релятивистская высокочастотная электроника: Сб. науч. тр. Горький: ИПФ АН СССР. 1984. № 4. С. 104. https://ipfran.ru/api/elibrary/11573/4.pdf
  6. Диденко А.Н., Григорьев В.П., Жерлицын А.Г. // Плазменная электроника: Сб. науч. тр. Киев: Наукова думка, 1989. С. 112.
  7. Hoeberling R.F., Fazio M.V. // IEEE Trans. 1992. V. EC-34. № 3. P. 252. https://doi.org/10.1109/15.155837
  8. Рухадзе А.А., Столбецов С.Д., Тараканов В.П. // РЭ. 1992. Т. 37. № 3. С. 385.
  9. Дубинов А.Е., Селемир В.Д. // РЭ. 2002. Т. 47. № 6. С. 645.
  10. Selemir V.D., Dubinov A.E., Voronin V.V., Zhdanov V.S. // IEEE Trans. 2020. V. PS-48. № 6. P. 1860. https://doi.org/10.1109/TPS.2020.2974868
  11. Богданкевич Л.С., Рухадзе А.А. // Успехи физ. наук. 1971. Т. 103. № 4. С. 609. https://doi.org/10.1070/PU1971v014n02ABEH004456
  12. Дубинов А.Е., Тараканов В.П. // ЖТФ. 2020. Т. 90. № 6. С. 1043. https://doi.org/10.1134/S1063784220060080
  13. Дубинов А.Е., Тараканов В.П. // Физика плазмы. 2020. Т. 46. № 5. С. 476. https://doi.org/10.1134/S1063780X20040029
  14. Дyбинoв A.E. // PЭ. 2000. T. 45. № 7. C. 875.
  15. Fuks M.I., Schamiloglu E. // Phys. Rev. Lett. 2019. V. 122. № 22. Article No. 224801. https://doi.org/10.1103/PhysRevLett.122.224801
  16. Leopold J.G., Krasik Ya.E., Bliokh Y.P., Schamiloglu E. // Phys. Plasmas. 2020. V. 27. № 10. Article No. 103102. https://doi.org/10.1063/5.0022115
  17. Nikolov N.A., Kostov K.G., Spasovsky I.P., Spasov V.A. // Electron. Lett. 1988. V. 24. № 23. P. 1445. https://doi.org/10.1049/el:19880987
  18. Tarakanov V.P. User’s Manual for Code KARAT. Springfield: Berkley Res. Associates, 1992.
  19. Ginzburg N.S., Rozental R.M., Sergeev A.S. et al. // Phys. Rev. Lett. 2017. V. 119. № 3. Article No. 034801. https://doi.org/10.1103/PhysRevLett.119.034801
  20. Тараканов В.П., Шустин Е.Г. // Физика плазмы. 2007. Т. 33. № 2. С. 151. https://doi.org/10.1134/S1063780X07020067
  21. Korovin S.D., Mesyats G.A., Pegel I.V. et al. // IEEE Trans. 2000. V. PS-28. № 3. P. 485. https://doi.org/10.1109/27.887654
  22. Дубинов А.Е., Селемир В.Д., Тараканов В.П. // Физика плазмы. 2020. Т. 46. № 11. С. 1026. https://doi.org/10.1134/S1063780X20110021
  23. Dubinov A.E., Tarakanov V.P. // Laser Particle Beams. 2017. V. 35. № 2. P. 362. https://doi.org/10.1017/S0263034617000283
  24. Dubinov A.E., Selemir V.D., Tarakanov V.P. // IEEE Trans. 2021. V. PS-49. № 6. P. 1834. https://doi.org/10.1109/TPS.2021.3080987
  25. Dubinov A.E., Saikov S.K., Tarakanov V.P. // IEEE Trans. 2020. V. PS-48. № 1. P. 141. https://doi.org/10.1109/TPS.2019.2956833
  26. Дубинов А.Е., Тараканов В.П. // РЭ. 2022. Т. 67. № 6. С. 596 https://doi.org/10.31857/S0033849422050059
  27. Ignatov A.M., Tarakanov V.P. // Phys. Plasmas. 1994. V. 1. № 3. P. 741. https://doi.org/10.1063/1.870819
  28. Дубинов А.Е. // Письма ЖТФ. 1997. Т. 23. № 22. С. 29. https://doi.org/10.1134/1.1261915
  29. Беломытцев С.Я., Гришков А.А., Кицанов С.А. и др. // Письма ЖТФ. 2005. Т. 31. № 22. С. 74. https://doi.org/10.1134/1.2136972
  30. Барабанов В.Н., Дубинов А.Е., Лойко М.В. и др. // Физика плазмы. 2012. Т. 38. № 2. С. 189. https://doi.org/10.1134/S1063780X12010023
  31. Егоров Е.Н., Короновский А.А., Куркин С.А., Храмов А.Е. // Физика плазмы. 2013. Т. 39. № 11. С. 1033. https://doi.org/10.1134/S1063780X13110044
  32. Dubinov A.E., Petrik A.G., Kurkin S.A. et al. // Phys. Plasmas. 2016. V. 23. № 4. Article No. 042105. https://doi.org/10.1063/1.4945644
  33. Dubinov A.E., Saikov S.K., Tarakanov V.P. // Phys. Wave Phenom. 2017. V. 25. № 3. P. 238. https://doi.org/10.3103/S1541308X17030128
  34. Leopold J.G., Krasik Ya.E., Bliokh Y.P., Schamiloglu E. // Phys. Plasmas. 2020. V. 27. № 10. P. 103102-1. https://doi.org/10.1063/5.0022115
  35. Hwang C.S., Wu M.W., Song P.S., Hou W.S. // J. Appl. Phys. 1991. V. 69. № 3. P. 1247. https://doi.org/10.1063/1.347310
  36. Verma R., Shukla R., Sharma S.K. et al. // IEEE Trans. 2014. V. ED-61. № 1. P. 141. https://doi.org/10.1109/TED.2013.2288310

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (50KB)
3.

Download (198KB)
4.

Download (25KB)
5.

Download (80KB)
6.

Download (97KB)
7.

Download (37KB)
8.

Download (36KB)
9.

Download (257KB)

Copyright (c) 2023 А.Е. Дубинов, Г.Н. Колесов, В.Д. Селемир, В.П. Тараканов