Modeling the frequency characteristics of the waveguide structure of a heterodyne receiver with sideband division for the range 211...275 GHz

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The microwave properties of the components of the waveguide structure of a heterodyne receiver in the 211...275 GHz range with sideband separation based on a pair of superconductor–insulator–superconductor (SIS) tunnel junctions are described. The following elements of the waveguide were studied structures: hybrid four-port splitter, directional coupler, T-shaped splitter body and waveguide absorber. S parameters were calculated for all elements. For hybrid divider additionally shows a phase balance with deviations of less than 0.4 degrees, and an amplitude balance within 1 dB. The expected level of quality of band separation in a band separation receiver using the studied waveguide elements is analyzed; its value is more than –25 dB. The waveguide elements are designed taking into account the fact that the block will be manufactured using precision milling; the minimum dimensions of the waveguide structure are limited by the diameter of the cutter used; in our case, 100 μm was chosen. All numerical calculations were performed using the finite interval method in the HFSS package.

Sobre autores

I. Tretyakov

Astro Space Center of P.N. Lebedev Physical Institute RAS; Moscow Pedagogical State University

Email: tretyakov@asc.rssi.ru
Moscow, 117997, Russia; Moscow, 119991, Russia

A. Khudchenko

Astro Space Center of P.N. Lebedev Physical Institute RAS; Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences

Email: tretyakov@asc.rssi.ru
Moscow, 117997, Russia; Moscow, 125009 Russia

R. Cherny

Astro Space Center of P.N. Lebedev Physical Institute RAS

Email: tretyakov@asc.rssi.ru
Moscow, 117997, Russia

S. Likhachev

Astro Space Center of P.N. Lebedev Physical Institute RAS

Autor responsável pela correspondência
Email: tretyakov@asc.rssi.ru
Moscow, 117997, Russia

Bibliografia

  1. Kerr A.R., Feldman M.J., Pan S.-K. // Proc. Eighth Int. Symp. on Space Terahertz Technology. Cambridge MA. 25–27 Mar. 1997. Harvard-Smithsonian Center for Astrophysics, 1997. P. 101.
  2. Rudakov K.I., Khudchenko A.V., Filippenko L.V. et al. // Appl. Sci. 2021. V. 11. № 21. P. 10087.
  3. Balega Yu.Yu., Baryshev A.M., Bubnov G.M. et al. // Radiophysics and Quantum Electronics. 2020. V. 63. № 7. P.479.
  4. Рудаков К.И., Дмитриев П.Н., Барышев А.М. и др. // Изв. вузов. Радиофизика. 2019. Т. 62. № 7. С. 613.
  5. Pickett H.M., Poynter R.L., Cohen E.A. et al. // J. Quantum Spectroscopy Radiative Transfer. 1998. V. 60. P. 883.
  6. Новиков И.Д., Лихачев С.Ф., Щекинов Ю.А. и др. // Успехи физ. наук. 2021. Т. 191. № 4. С. 404.
  7. Лихачёв С.Ф., Рудницкий А.Г., Андрианов А.С. и др. // Космич. исслед. 2024. № 1. С. 78.
  8. Hesper R., Khudchenko A., Baryshev A.M. // IEEE Trans. 2017. V. TST-7. № 6, P. 686.
  9. Kerr A.R., Moseley H., Wollack E. et al. MF-112 and MF-116: Compact Waveguide Loads and fts Measurements at Room Temperature and 5 K. ALMA memo 494, 2004.
  10. Mena F.P., Baryshev A.M. Design and Simulation of a Waveguide Load for ALMA-band 9. ALMA memo 513, 2005.
  11. Hesper R., Khudchenko A., Baryshev A.M. et al. // Proc. SPIE. 2016. V. 9914. Article No. 9914G.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (343KB)
3.

Baixar (219KB)
4.

Baixar (118KB)
5.

Baixar (66KB)
6.

Baixar (45KB)
7.

Baixar (66KB)
8.

Baixar (64KB)
9.

Baixar (44KB)
10.

Baixar (73KB)
11.

Baixar (167KB)
12.

Baixar (63KB)

Declaração de direitos autorais © И.В. Третьяков, А.В. Худченко, Р.А. Черный, С.Ф. Лихачев, 2023