Comparison of methods for calculating superconducting integrated structures using semi-analytical calculations and in three-dimensional numerical modeling programs
- Authors: Khan F.V.1,2, Atepalikhin A.A.1,2, Filippenko L.V.1, Koshelets V.P.1
-
Affiliations:
- Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences
- Moscow Institute of Physics and Technology (National Research University)
- Issue: Vol 68, No 9 (2023)
- Pages: 897-903
- Section: К 70-ЛЕТИЮ ИРЭ ИМ. В.А. КОТЕЛЬНИКОВА РАН
- URL: https://kazanmedjournal.ru/0033-8494/article/view/650473
- DOI: https://doi.org/10.31857/S0033849423090115
- EDN: https://elibrary.ru/SBYWUN
- ID: 650473
Cite item
Abstract
Modeling of superconducting integrated structures in the frequency range was carried out 300...750 GHz by two methods: 1) using ABCD matrices associated with each element of the circuit; 2) using the Ansys HFSS program. The surface impedance values of superconducting films are calculated numerically using expressions from the Matthies–Bardeen theory. It was found that for samples with microstrip line widths less than a quarter of the wavelength, both models are in qualitative agreement with each other and with experimental data. Shown that with an increase in the width of the lines and the geometric dimensions of other structural elements, transverse modes arise, as well as curvature of the wave front propagating along the lines waves, which causes differences between the semi-analytical and numerical calculations, which coincide with the experiment for all samples.
About the authors
F. V. Khan
Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)
Email: khanfv@hitech.cplire.ru
Moscow, 125009 Russia; Dolgoprudnyi, Moscow oblast, 141701 Russia
A. A. Atepalikhin
Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)
Email: khanfv@hitech.cplire.ru
Moscow, 125009 Russia; Dolgoprudnyi, Moscow oblast, 141701 Russia
L. V. Filippenko
Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences
Email: khanfv@hitech.cplire.ru
Moscow, 125009 Russia
V. P. Koshelets
Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences
Author for correspondence.
Email: khanfv@hitech.cplire.ru
Moscow, 125009 Russia
References
- Kojima T., Kroug M., Takeda M. et al. // Appl. Phys. Express 2009. V. 2. № 10. P. 102201. https://doi.org/10.1143/APEX.2.102201
- De Lange G., Birk M., Boersma D. et al. // Superconductor Sci. Technol. 2010. V. 23. № 4. P. 045016. https://doi.org/10.1088/0953-2048/23/4/045016
- Billade B., Pavolotsky A., Belitsky V. // IEEE Trans. 2013. V. TST-3. № 4. P. 416. https://doi.org/10.1109/TTHZ.2013.2255734
- Шмидт В.В. Введение в физику сверхпроводников М.: МЦНМО, 2000.
- Baksheeva K.A., Ozhegov R.V., Goltsman G.N. et al. // IEEE Trans. 2021. V. TST-11. № 4. P. 381. https://doi.org/10.1109/TTHZ.2021.3066099
- Kinev N.V., Rudakov K.I., Filippenko L.V., Koshelets V.P. et al. // Phys. Solid State. 2021. V. 63. P. 1414. https://doi.org/10.1134/S1063783421090171
- Barychev A.M. Superconductor–Insulator–Superconductor THz Mixer Integrated with a Superconducting Flux-Flow Oscillator. PhD thesis, Delft: Delft Univ. Technol, 2005. 144 p.
- Водзяновский Я.О., Худченко А.В., Кошелец В.П. // ФТТ. 2022. Т. 64. № 10. С. 1385.
- Фуско В. СВЧ цепи. М.: Радио и связь, 1990.
- Frickey D.A. // IEEE Trans. 1994. V. MTT-42. № 2. P. 205. https://doi.org/10.1109/22.275248
- Шевченко М.С., Филиппенко Л.В., Киселев О.С., Кошелец В.П. // ФТТ. 2022. Т. 64. № 9. С. 1223.
- Koshelets V.P., Shitov S.V., Filippenko L.V. et al. // Superconducting Sci. Technol. 2004. V. 17. № 127. https://doi.org/10.1088/0953-2048/17/5/007
- Koshelets V.P., Shitov S.V. // Superconductor Sci. Technol. 2000. V. 13. № 5. P. 53. https://doi.org/10.1088/0953-2048/13/5/201
- Tucker J.R., Feldman M.J. // Rev. Mod. Phys. 1985. V. 57. № 4. P. 1055. https://doi.org/10.1103/RevModPhys.57.1055
- Filippenko L.V., Shitov S.V., Dmitriev P.N. et al. // IEEE Trans. 2001. V. TAS-11. № 1. P. 816. https://doi.org/10.1109/77.919469
- Fominsky M.Yu., Filippenko L.V., Chekushkin A.M. et al. // Electronic. 2021. V. 10. № 23. P. 2944. https://doi.org/10.3390/electronics10232944
- Tolpygo S.K., Bolkhovky V., Weir T.J. et al. // IEEE Trans. 2014. V. TAS-25. № 3. P. 1. https://doi.org/10.1109/TASC.2014.2369213
- Атепалихин А.А., Хан Ф.В., Филиппенко Л.В., Кошелец В.П. // ФТТ. 2022. Т. 64. № 10. С. 1378. https://doi.org/10.21883/PSS.2022.10.54219.41HH
- Шитов С.В. Интегральные устройства на сверхпроводниковых туннельных переходах для приемников миллиметровых и субмиллиметровых волн. Дис. … д-ра физ.-мат. наук. М.: ИРЭ им. В.А. Котельникова РАН, 2003. 428 с.
- Yassin G., Withington S. // J. Phys. D: Appl. Phys. 1995. V. 28. № 9. P. 1983. https://doi.org/10.1088/0022-3727/28/9/028
- Swihart J.C. // J. Appl. Phys. 1961. V. 32. № 3. P. 461. https://doi.org/10.1063/1.1736025
- Mattis D.C., Bardeen J. // Phys. Rev. 1958. V. 111. № 2. P. 412. https://doi.org/10.1103/PhysRev.111.412
- Zimmermann W., Brandt E.H., Bauer M. et al. // Physica C: Superconductivity. 1991. V. 183. № 1–3. P. 99. https://doi.org/10.1016/0921-4534(91)90771-P
- Pöpel R. // J. Appl. Phys. 1989. V. 66. № 12. P. 5950. https://doi.org/10.1063/1.343622
- Nam S.B. // Phys. Rev. 1967. V. 156. № 2. P. 470. https://doi.org/10.1103/PhysRev.156.470
- Банков С.Е., Курушин А.А., Разевиг В.Д. // Анализ и оптимизация СВЧ-структур с помощью HFSS. Учеб. пособие. М.: СОЛОН-Пресс, 2005.
- Kerr A.R., Pan S.K. // Int. J. Infrared and Millimeter Waves. 1990. V. 11. № 10. P. 1169. https://doi.org/10.1007/BF01014738
- Belitsky V., Risacher C., Pantaleev M., Vassilev V. // Int. J. Infrared and Millimeter Waves. 2006. V. 27. № 1. P. 809. https://doi.org/10.1007/s10762-006-9116-5
Supplementary files
