Optimization of cytotoxic properties of magnetic nanoparticle-based doxorubicin delivery system
- Authors: Kurtova А.I.1, Svetlakova A.V.1, Kolesnikova O.А.1, Shipunova V.O.1,2
-
Affiliations:
- Moscow Institute of Physics and Technology
- Nanobiomedicine Division, Sirius University of Science and Technology
- Issue: Vol 59, No 2 (2025)
- Pages: 288-298
- Section: СТРУКТУРНО-ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ БИОПОЛИМЕРОВИ ИХ КОМПЛЕКСОВ
- URL: https://kazanmedjournal.ru/0026-8984/article/view/682883
- DOI: https://doi.org/10.31857/S0026898425020108
- EDN: https://elibrary.ru/GFXGJH
- ID: 682883
Cite item
Abstract
Doxorubicin (DOX) is a widely used cytotoxic drug with high antitumor activity, but its use is accompanied by side effects. The development of DOX delivery systems that can minimize systemic toxicity and increase therapeutic efficacy is an urgent task in modern oncology. We investigated the process of loading nanoparticles (NPs) with DOX under conditions that promote DOX precipitation in order to achieve maximum sorption efficiency. For this purpose, polymer-stabilized magnetic NPs were synthesized, and the efficiency of loading and precipitation was studied in dependence on the buffer, DOX concentration, and incubation time with the drug. It was shown that in solutions with the most pronounced DOX precipitate formation (phosphate and borate buffers) loading proceeded maximally efficiently. In a phosphate buffer at an initial DOX concentration of 667 μg/mL, the loade was 886 mg DOX/g NPs. The sorption of DOX on NPs under these conditions reached 85% of DOX already within the first hour, and increased to 90% within 3 h. The release of DOX from NPs was 25% at pH 7.4 and 96% at pH 5.4. The survival analysis of EMT-HER2 breast cancer cells showed that the cytotoxicity of NPs loaded with DOX under precipitation conditions was 8 times higher than that of NPs loaded at a concentration of 20 μg/mL, i.e. when DOX does not form a precipitate. This allows us to consider NPs loaded with precipitated DOC as an effective delivery system that, without impairing the cytotoxic properties of the drug, can significantly increase its content and release in tumor cells.
Keywords
Full Text

About the authors
А. I. Kurtova
Moscow Institute of Physics and Technology
Author for correspondence.
Email: viktoriya.shipunova@phystech.edu
Institute of Future Biophysics
Russian Federation, Dolgoprudny, Moscow RegionA. V. Svetlakova
Moscow Institute of Physics and Technology
Email: viktoriya.shipunova@phystech.edu
Institute of Future Biophysics
Russian Federation, Dolgoprudny, Moscow RegionO. А. Kolesnikova
Moscow Institute of Physics and Technology
Email: viktoriya.shipunova@phystech.edu
Institute of Future Biophysics
Russian Federation, Dolgoprudny, Moscow RegionV. O. Shipunova
Moscow Institute of Physics and Technology; Nanobiomedicine Division, Sirius University of Science and Technology
Email: viktoriya.shipunova@phystech.edu
Institute of Future Biophysics
Russian Federation, Dolgoprudny, Moscow Region; Sirius Federal Territory, Krasnodar regionReferences
- Tilsed C.M., Fisher S.A., Nowak A.K., Lake R.A., Lesterhuis W.J. (2022) Cancer chemotherapy: insights into cellular and tumor microenvironmental mechanisms of action. Front. Oncol. 12, 960317. doi: 10.3389/fonc.2022.960317
- Kciuk M., Gielecińska A., Mujwar S., Kołat D., Kałuzińska-Kołat Ż., Celik I., Kontek R. (2023) Doxorubicin-an agent with multiple mechanisms of anticancer activity. Cells. 12(4), 659. doi: 10.3390/cells12040659
- Al-Malky H.S., Al Harthi S.E., Osman A.-M.M. (2020) Major obstacles to doxorubicin therapy: cardiotoxicity and drug resistance. J. Oncol. Pharm. Pract. 26, 434–444. doi: 10.1177/1078155219877931
- Carvalho C., Santos R.X., Cardoso S., Correia S., Oliveira P.J., Santos M.S., Moreira P.I. (2009) Doxorubicin: the good, the bad and the ugly effect. Curr. Med. Chem. 16, 3267–3285. doi: 10.2174/092986709788803312
- Kanwal U., Irfan Bukhari N., Ovais M., Abass N., Hussain K., Raza A. (2018) Advances in nano-delivery systems for doxorubicin: an updated insight. J. Drug Target. 26, 296–310. doi: 10.1080/1061186X.2017.1380655
- Liu Y., Yang G., Jin S., Xu L., Zhao C.-X. (2020) Development of high-drug-loading nanoparticles. Chempluschem. 85, 2143–2157. doi: 10.1002/cplu.202000496
- Zeng W., Luo Y.;, Gan D., Zhang Y., Deng H., Liu G. (2023) Advances in doxorubicin-based nano-drug delivery system in triple negative breast cancer. Front. Bioeng. Biotechnol. 11, 1271420. doi: 10.3389/fbioe.2023.1271420
- Estelrich J., Escribano E., Queralt J., Busquets M.A. (2015) Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int. J. Mol. Sci. 16, 8070–8101. doi: 10.3390/ijms16048070
- Kakar S., Batra D., Singh R., Nautiyal U. (2013) Magnetic microspheres as magical novel drug delivery system: a review. J. Acute Disease. 2, 1–12. doi: 10.1016/S2221-6189(13)60087-6
- Palanisamy S., Wang Y.-M. (2019) Superparamagnetic iron oxide nanoparticulate system: synthesis, targeting, drug delivery and therapy in cancer. Dalton Trans. 48, 9490–9515. doi: 10.1039/C9DT00459A
- Canese R., Vurro F., Marzola P. (2021) Iron oxide nanoparticles as theranostic agents in cancer immunotherapy. Nanomaterials (Basel). 11(8), 1950. doi: 10.3390/nano11081950
- Tong S., Zhu H., Bao G. (2019) Magnetic iron oxide nanoparticles for disease detection and therapy. Mater. Today (Kidlington). 31, 86–99. doi: 10.1016/j.mattod.2019.06.003
- Zhu N., Ji H., Yu P., Niu J., Farooq M.U., Akram M.W., Udego I.O., Li H., Niu X. (2018) Surface modification of magnetic iron oxide nanoparticles. Nanomaterials (Basel). 8(10), 810. doi: 10.3390/nano8100810
- Doan L., Nguyen L.T., Nguyen N.T.N. (2023) Modifying superparamagnetic iron oxides nanoparticles for doxorubicin delivery carriers: a review. J. Nanopart. Res 25(4), 73. doi: 10.1007/s11051-023-05716-3
- Demin A.M., Vakhrushev A.V., Valova M.S., Korolyova M.A., Uimin M.A., Minin A.S., Pozdina V.A., Byzov I.V., Tumashov A.A., Chistyakov K.A., Levit G.L., Krasnov V.P., Charushin V.N. (2022) Effect of the silica-magnetite nanocomposite coating functionalization on the doxorubicin sorption/desorption. Pharmaceutics. 14(11), 2271. doi: 10.3390/pharmaceutics14112271
- Eslami P., Albino M., Scavone F., Chiellini F., Morelli A., Baldi G., Cappiello L., Doumett S., Lorenzi G., Ravagli C., Caneschi A., Laurenzana A., Sangregorio C. (2022) Smart magnetic nanocarriers for multi-stimuli on-demand drug delivery. Nanomaterials (Basel). 12(3), 303. doi: 10.3390/nano12030303
- Khabibullin V.R., Chetyrkina M.R., Obydennyy S.I., Maksimov S.V., Stepanov G.V., Shtykov S.N. (2023) Study on doxorubicin loading on differently functionalized iron oxide nanoparticles: implications for controlled drug-delivery application. Int. J. Mol. Sci. 24(5), 4480. doi: 10.3390/ijms24054480
- Yamada Y. (2020) Dimerization of doxorubicin causes its precipitation. ACS Omega. 5, 33235–33241. doi: 10.1021/acsomega.0c04925
- Bofill-Bonet C., Gil-Vives M., Artigues M., Hernández M., Borrós S., Fornaguera C. (2023) Fine-tuning formulation and biological interaction of doxorubicin-loaded polymeric nanoparticles via electrolyte concentration modulation. J. Mol. Liquids. 390, 122986. doi: 10.1016/j.molliq.2023. 122986
- Menozzi M., Valentini L., Vannini E., Arcamone F. (1984) Self-association of doxorubicin and related compounds in aqueous solution. J. Pharm. Sci. 73, 766–770. doi: 10.1002/jps.2600730615
- Cai W., Guo M., Weng X., Zhang W., Chen Z. (2019) Adsorption of doxorubicin hydrochloride on glutaric anhydride functionalized Fe3O4@SiO2 magnetic nanoparticles. Mater. Sci. Eng. C Mater. Biol. Appl. 98, 65–73. doi: 10.1016/j.msec.2018.12.145
- Liu X., Wang C., Wang X., Tian C., Shen Y., Zhu M. (2021) A dual-targeting Fe3O4@C/ZnO-DOX-FA nanoplatform with pH-responsive drug release and synergetic chemo-photothermal antitumor in vitro and in vivo. Mater. Sci. Eng. C Mater. Biol. Appl. 118, 111455. doi: 10.1016/j.msec.2020.111455
- Nogueira J., Soares S.F., Amorim C.O., Amaral J.S., Silva C., Martel F., Trindade T., Daniel-da-Silva A.L. (2020) Magnetic driven nanocarriers for pH-responsive doxorubicin release in cancer therapy. Molecules. 25(2), 333. doi: 10.3390/molecules25020333
- Hernandes E.P., Lazarin-Bidóia D., Bini R.D., Nakamura C.V., Cótica L.F., de Oliveira Silva Lautenschlager S. (2023) Doxorubicin-loaded iron oxide nanoparticles induce oxidative stress and cell cycle arrest in breast cancer cells. Antioxidants (Basel). 12, 237. doi: 10.3390/antiox12020237
- Kayal S., Ramanujan R.V. (2010) Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery. Mater. Sci. Eng. C. 30, 484–490. doi: 10.1016/j.msec.2010.01.006
- Shin S., Lee J., Han J., Li F., Ling D., Park W. (2022) Tumor microenvironment modulating functional nanoparticles for effective cancer treatments. Tissue Eng. Regen. Med. 19, 205–219. doi: 10.1007/s13770-021-00403-7
- Shipunova V.O., Kolesnikova O.A., Kotelnikova P.A., Soloviev V.D., Popov A.A., Proshkina G.M., Nikitin M.P., Deyev S.M. (2021) Comparative evaluation of engineered polypeptide scaffolds in HER2-targeting magnetic nanocarrier delivery. ACS Omega. 6, 16000–16008. doi: 10.1021/acsomega.1c01811
- Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., Tinevez J.-Y., White D.J., Hartenstein V., Eliceiri K., Tomancak P., Cardona A. (2012) Fiji: an open-source platform for biological-image analysis. Nat. Methods. 9, 676–682. doi: 10.1038/nmeth.2019
- Shipunova V.O., Komedchikova E.N., Kotelnikova P.A., Nikitin M.P., Deyev S.M. (2023) Targeted two-step delivery of oncotheranostic nano-PLGA for HER2-positive tumor imaging and therapy in vivo: improved effectiveness compared to one-step strategy. Pharmaceutics. 15, 833. doi: 10.3390/pharmaceutics15030833
- Kolesnikova O.A., Komedchikova E.N., Zvereva S.D., Obozina A.S., Dorozh O.V., Afanasev I., Nikitin P.I., Mochalova E.N., Nikitin M.P., Shipunova V.O. (2024) Albumin incorporation into recognising layer of HER2-specific magnetic nanoparticles as a tool for optimal targeting of the acidic tumor microenvironment. Heliyon. 10, e34211. doi: 10.1016/j.heliyon.2024.e34211
- Iureva A.M., Nikitin P.I., Tereshina E.D., Nikitin M.P., Shipunova V.O. (2024) The influence of various polymer coatings on the in vitro and in vivo properties of PLGA nanoparticles: comprehensive study. Eur. J. Pharm. Biopharm. 201, 114366. doi: 10.1016/j.ejpb.2024.114366
- Singh N., Nayak J., Sahoo S.K., Kumar R. (2019) Glutathione conjugated superparamagnetic Fe3O4-Au core shell nanoparticles for pH controlled release of DOX. Mater. Sci. Eng. C. 100, 453–465. doi: 10.1016/j.msec.2019.03.031
- Kovrigina E., Chubarov A., Dmitrienko E. (2022) High drug capacity doxorubicin-loaded iron oxide nanocomposites for cancer therapy. Magnetochemistry. 8, 54. doi: 10.3390/magnetochemistry8050054
- Sturgeon R.J., Schulman S.G. (1977) Electronic absorption spectra and protolytic equilibria of doxorubicin: direct spectrophotometric determination of microconstants. J. Pharm. Sci. 66, 958–961. doi: 10.1002/jps.2600660714
- Minati L., Antonini V., Dalla Serra M., Speranza G., Enrichi F., Riello P. (2013) pH-activated doxorubicin release from polyelectrolyte complex layer coated mesoporous silica nanoparticles. Microporous Mesoporous Mater. 180, 86–91. doi: 10.1016/j.micromeso.2013.06.016
- Wang Y., Yang S.-T., Wang Y., Liu Y., Wang H. (2012) Adsorption and desorption of doxorubicin on oxidized carbon nanotubes. Colloids Surf. B Biointerfaces. 97, 62–69. doi: 10.1016/j.colsurfb.2012.04.013
- Zhao N., Woodle M.C., Mixson A.J. (2018) Advances in delivery systems for doxorubicin. J. Nanomed. Nanotechnol. 9(5), 519. doi: 10.4172/2157-7439.1000519
- Li J., Li X., Pei M., Liu P. (2020) Acid-labile anhydride-linked doxorubicin-doxorubicin dimer nanoparticles as drug self-delivery system with minimized premature drug leakage and enhanced anti-tumor efficacy. Colloids Surf. B Biointerfaces. 192, 111064. doi: 10.1016/j.colsurfb.2020.111064
- Xue P., Wang J., Han X., Wang Y. (2019) Hydrophobic drug self-delivery systems as a versatile nanoplatform for cancer therapy: a review. Colloids Surf. B Biointerfaces. 180, 202–211. doi: 10.1016/j.colsurfb.2019.04.050
- Yang C., Liu P. (2024) Regulating drug release performance of acid-triggered dimeric prodrug-based drug self-delivery system by altering its aggregation structure. Molecules. 29(15), 3619. doi: 10.3390/molecules29153619
Supplementary files
