Optimization of cytotoxic properties of magnetic nanoparticle-based doxorubicin delivery system

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Doxorubicin (DOX) is a widely used cytotoxic drug with high antitumor activity, but its use is accompanied by side effects. The development of DOX delivery systems that can minimize systemic toxicity and increase therapeutic efficacy is an urgent task in modern oncology. We investigated the process of loading nanoparticles (NPs) with DOX under conditions that promote DOX precipitation in order to achieve maximum sorption efficiency. For this purpose, polymer-stabilized magnetic NPs were synthesized, and the efficiency of loading and precipitation was studied in dependence on the buffer, DOX concentration, and incubation time with the drug. It was shown that in solutions with the most pronounced DOX precipitate formation (phosphate and borate buffers) loading proceeded maximally efficiently. In a phosphate buffer at an initial DOX concentration of 667 μg/mL, the loade was 886 mg DOX/g NPs. The sorption of DOX on NPs under these conditions reached 85% of DOX already within the first hour, and increased to 90% within 3 h. The release of DOX from NPs was 25% at pH 7.4 and 96% at pH 5.4. The survival analysis of EMT-HER2 breast cancer cells showed that the cytotoxicity of NPs loaded with DOX under precipitation conditions was 8 times higher than that of NPs loaded at a concentration of 20 μg/mL, i.e. when DOX does not form a precipitate. This allows us to consider NPs loaded with precipitated DOC as an effective delivery system that, without impairing the cytotoxic properties of the drug, can significantly increase its content and release in tumor cells.

Full Text

Restricted Access

About the authors

А. I. Kurtova

Moscow Institute of Physics and Technology

Author for correspondence.
Email: viktoriya.shipunova@phystech.edu

Institute of Future Biophysics

Russian Federation, Dolgoprudny, Moscow Region

A. V. Svetlakova

Moscow Institute of Physics and Technology

Email: viktoriya.shipunova@phystech.edu

Institute of Future Biophysics

Russian Federation, Dolgoprudny, Moscow Region

O. А. Kolesnikova

Moscow Institute of Physics and Technology

Email: viktoriya.shipunova@phystech.edu

Institute of Future Biophysics

Russian Federation, Dolgoprudny, Moscow Region

V. O. Shipunova

Moscow Institute of Physics and Technology; Nanobiomedicine Division, Sirius University of Science and Technology

Email: viktoriya.shipunova@phystech.edu

Institute of Future Biophysics

Russian Federation, Dolgoprudny, Moscow Region; Sirius Federal Territory, Krasnodar region

References

  1. Tilsed C.M., Fisher S.A., Nowak A.K., Lake R.A., Lesterhuis W.J. (2022) Cancer chemotherapy: insights into cellular and tumor microenvironmental mechanisms of action. Front. Oncol. 12, 960317. doi: 10.3389/fonc.2022.960317
  2. Kciuk M., Gielecińska A., Mujwar S., Kołat D., Kałuzińska-Kołat Ż., Celik I., Kontek R. (2023) Doxorubicin-an agent with multiple mechanisms of anticancer activity. Cells. 12(4), 659. doi: 10.3390/cells12040659
  3. Al-Malky H.S., Al Harthi S.E., Osman A.-M.M. (2020) Major obstacles to doxorubicin therapy: cardiotoxicity and drug resistance. J. Oncol. Pharm. Pract. 26, 434–444. doi: 10.1177/1078155219877931
  4. Carvalho C., Santos R.X., Cardoso S., Correia S., Oliveira P.J., Santos M.S., Moreira P.I. (2009) Doxorubicin: the good, the bad and the ugly effect. Curr. Med. Chem. 16, 3267–3285. doi: 10.2174/092986709788803312
  5. Kanwal U., Irfan Bukhari N., Ovais M., Abass N., Hussain K., Raza A. (2018) Advances in nano-delivery systems for doxorubicin: an updated insight. J. Drug Target. 26, 296–310. doi: 10.1080/1061186X.2017.1380655
  6. Liu Y., Yang G., Jin S., Xu L., Zhao C.-X. (2020) Development of high-drug-loading nanoparticles. Chempluschem. 85, 2143–2157. doi: 10.1002/cplu.202000496
  7. Zeng W., Luo Y.;, Gan D., Zhang Y., Deng H., Liu G. (2023) Advances in doxorubicin-based nano-drug delivery system in triple negative breast cancer. Front. Bioeng. Biotechnol. 11, 1271420. doi: 10.3389/fbioe.2023.1271420
  8. Estelrich J., Escribano E., Queralt J., Busquets M.A. (2015) Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int. J. Mol. Sci. 16, 8070–8101. doi: 10.3390/ijms16048070
  9. Kakar S., Batra D., Singh R., Nautiyal U. (2013) Magnetic microspheres as magical novel drug delivery system: a review. J. Acute Disease. 2, 1–12. doi: 10.1016/S2221-6189(13)60087-6
  10. Palanisamy S., Wang Y.-M. (2019) Superparamagnetic iron oxide nanoparticulate system: synthesis, targeting, drug delivery and therapy in cancer. Dalton Trans. 48, 9490–9515. doi: 10.1039/C9DT00459A
  11. Canese R., Vurro F., Marzola P. (2021) Iron oxide nanoparticles as theranostic agents in cancer immunotherapy. Nanomaterials (Basel). 11(8), 1950. doi: 10.3390/nano11081950
  12. Tong S., Zhu H., Bao G. (2019) Magnetic iron oxide nanoparticles for disease detection and therapy. Mater. Today (Kidlington). 31, 86–99. doi: 10.1016/j.mattod.2019.06.003
  13. Zhu N., Ji H., Yu P., Niu J., Farooq M.U., Akram M.W., Udego I.O., Li H., Niu X. (2018) Surface modification of magnetic iron oxide nanoparticles. Nanomaterials (Basel). 8(10), 810. doi: 10.3390/nano8100810
  14. Doan L., Nguyen L.T., Nguyen N.T.N. (2023) Modifying superparamagnetic iron oxides nanoparticles for doxorubicin delivery carriers: a review. J. Nanopart. Res 25(4), 73. doi: 10.1007/s11051-023-05716-3
  15. Demin A.M., Vakhrushev A.V., Valova M.S., Korolyova M.A., Uimin M.A., Minin A.S., Pozdina V.A., Byzov I.V., Tumashov A.A., Chistyakov K.A., Levit G.L., Krasnov V.P., Charushin V.N. (2022) Effect of the silica-magnetite nanocomposite coating functionalization on the doxorubicin sorption/desorption. Pharmaceutics. 14(11), 2271. doi: 10.3390/pharmaceutics14112271
  16. Eslami P., Albino M., Scavone F., Chiellini F., Morelli A., Baldi G., Cappiello L., Doumett S., Lorenzi G., Ravagli C., Caneschi A., Laurenzana A., Sangregorio C. (2022) Smart magnetic nanocarriers for multi-stimuli on-demand drug delivery. Nanomaterials (Basel). 12(3), 303. doi: 10.3390/nano12030303
  17. Khabibullin V.R., Chetyrkina M.R., Obydennyy S.I., Maksimov S.V., Stepanov G.V., Shtykov S.N. (2023) Study on doxorubicin loading on differently functionalized iron oxide nanoparticles: implications for controlled drug-delivery application. Int. J. Mol. Sci. 24(5), 4480. doi: 10.3390/ijms24054480
  18. Yamada Y. (2020) Dimerization of doxorubicin causes its precipitation. ACS Omega. 5, 33235–33241. doi: 10.1021/acsomega.0c04925
  19. Bofill-Bonet C., Gil-Vives M., Artigues M., Hernández M., Borrós S., Fornaguera C. (2023) Fine-tuning formulation and biological interaction of doxorubicin-loaded polymeric nanoparticles via electrolyte concentration modulation. J. Mol. Liquids. 390, 122986. doi: 10.1016/j.molliq.2023. 122986
  20. Menozzi M., Valentini L., Vannini E., Arcamone F. (1984) Self-association of doxorubicin and related compounds in aqueous solution. J. Pharm. Sci. 73, 766–770. doi: 10.1002/jps.2600730615
  21. Cai W., Guo M., Weng X., Zhang W., Chen Z. (2019) Adsorption of doxorubicin hydrochloride on glutaric anhydride functionalized Fe3O4@SiO2 magnetic nanoparticles. Mater. Sci. Eng. C Mater. Biol. Appl. 98, 65–73. doi: 10.1016/j.msec.2018.12.145
  22. Liu X., Wang C., Wang X., Tian C., Shen Y., Zhu M. (2021) A dual-targeting Fe3O4@C/ZnO-DOX-FA nanoplatform with pH-responsive drug release and synergetic chemo-photothermal antitumor in vitro and in vivo. Mater. Sci. Eng. C Mater. Biol. Appl. 118, 111455. doi: 10.1016/j.msec.2020.111455
  23. Nogueira J., Soares S.F., Amorim C.O., Amaral J.S., Silva C., Martel F., Trindade T., Daniel-da-Silva A.L. (2020) Magnetic driven nanocarriers for pH-responsive doxorubicin release in cancer therapy. Molecules. 25(2), 333. doi: 10.3390/molecules25020333
  24. Hernandes E.P., Lazarin-Bidóia D., Bini R.D., Nakamura C.V., Cótica L.F., de Oliveira Silva Lautenschlager S. (2023) Doxorubicin-loaded iron oxide nanoparticles induce oxidative stress and cell cycle arrest in breast cancer cells. Antioxidants (Basel). 12, 237. doi: 10.3390/antiox12020237
  25. Kayal S., Ramanujan R.V. (2010) Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery. Mater. Sci. Eng. C. 30, 484–490. doi: 10.1016/j.msec.2010.01.006
  26. Shin S., Lee J., Han J., Li F., Ling D., Park W. (2022) Tumor microenvironment modulating functional nanoparticles for effective cancer treatments. Tissue Eng. Regen. Med. 19, 205–219. doi: 10.1007/s13770-021-00403-7
  27. Shipunova V.O., Kolesnikova O.A., Kotelnikova P.A., Soloviev V.D., Popov A.A., Proshkina G.M., Nikitin M.P., Deyev S.M. (2021) Comparative evaluation of engineered polypeptide scaffolds in HER2-targeting magnetic nanocarrier delivery. ACS Omega. 6, 16000–16008. doi: 10.1021/acsomega.1c01811
  28. Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., Tinevez J.-Y., White D.J., Hartenstein V., Eliceiri K., Tomancak P., Cardona A. (2012) Fiji: an open-source platform for biological-image analysis. Nat. Methods. 9, 676–682. doi: 10.1038/nmeth.2019
  29. Shipunova V.O., Komedchikova E.N., Kotelnikova P.A., Nikitin M.P., Deyev S.M. (2023) Targeted two-step delivery of oncotheranostic nano-PLGA for HER2-positive tumor imaging and therapy in vivo: improved effectiveness compared to one-step strategy. Pharmaceutics. 15, 833. doi: 10.3390/pharmaceutics15030833
  30. Kolesnikova O.A., Komedchikova E.N., Zvereva S.D., Obozina A.S., Dorozh O.V., Afanasev I., Nikitin P.I., Mochalova E.N., Nikitin M.P., Shipunova V.O. (2024) Albumin incorporation into recognising layer of HER2-specific magnetic nanoparticles as a tool for optimal targeting of the acidic tumor microenvironment. Heliyon. 10, e34211. doi: 10.1016/j.heliyon.2024.e34211
  31. Iureva A.M., Nikitin P.I., Tereshina E.D., Nikitin M.P., Shipunova V.O. (2024) The influence of various polymer coatings on the in vitro and in vivo properties of PLGA nanoparticles: comprehensive study. Eur. J. Pharm. Biopharm. 201, 114366. doi: 10.1016/j.ejpb.2024.114366
  32. Singh N., Nayak J., Sahoo S.K., Kumar R. (2019) Glutathione conjugated superparamagnetic Fe3O4-Au core shell nanoparticles for pH controlled release of DOX. Mater. Sci. Eng. C. 100, 453–465. doi: 10.1016/j.msec.2019.03.031
  33. Kovrigina E., Chubarov A., Dmitrienko E. (2022) High drug capacity doxorubicin-loaded iron oxide nanocomposites for cancer therapy. Magnetochemistry. 8, 54. doi: 10.3390/magnetochemistry8050054
  34. Sturgeon R.J., Schulman S.G. (1977) Electronic absorption spectra and protolytic equilibria of doxorubicin: direct spectrophotometric determination of microconstants. J. Pharm. Sci. 66, 958–961. doi: 10.1002/jps.2600660714
  35. Minati L., Antonini V., Dalla Serra M., Speranza G., Enrichi F., Riello P. (2013) pH-activated doxorubicin release from polyelectrolyte complex layer coated mesoporous silica nanoparticles. Microporous Mesoporous Mater. 180, 86–91. doi: 10.1016/j.micromeso.2013.06.016
  36. Wang Y., Yang S.-T., Wang Y., Liu Y., Wang H. (2012) Adsorption and desorption of doxorubicin on oxidized carbon nanotubes. Colloids Surf. B Biointerfaces. 97, 62–69. doi: 10.1016/j.colsurfb.2012.04.013
  37. Zhao N., Woodle M.C., Mixson A.J. (2018) Advances in delivery systems for doxorubicin. J. Nanomed. Nanotechnol. 9(5), 519. doi: 10.4172/2157-7439.1000519
  38. Li J., Li X., Pei M., Liu P. (2020) Acid-labile anhydride-linked doxorubicin-doxorubicin dimer nanoparticles as drug self-delivery system with minimized premature drug leakage and enhanced anti-tumor efficacy. Colloids Surf. B Biointerfaces. 192, 111064. doi: 10.1016/j.colsurfb.2020.111064
  39. Xue P., Wang J., Han X., Wang Y. (2019) Hydrophobic drug self-delivery systems as a versatile nanoplatform for cancer therapy: a review. Colloids Surf. B Biointerfaces. 180, 202–211. doi: 10.1016/j.colsurfb.2019.04.050
  40. Yang C., Liu P. (2024) Regulating drug release performance of acid-triggered dimeric prodrug-based drug self-delivery system by altering its aggregation structure. Molecules. 29(15), 3619. doi: 10.3390/molecules29153619

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Study design. a – Synthesis and modification of NPs. b – Scheme of experiments to optimize sorption conditions and test NPs with maximum DOC loading. CMD – carboxymethyldextran.

Download (255KB)
3. Fig. 2. Characteristics of the obtained magnetic nanoparticles. a, b – Micrographs of unmodified NPs obtained using SEM (a) and TEM (b). c – Histogram of NP size distribution based on the results of processing microelectron photographs. d – Efficiency of DOC sorption on NPs in different buffers. d – Photographs of test tubes after DOC sorption on NPs in different buffers.

Download (805KB)
4. Fig. 3. Sorption of DOC on nanoparticles in PBS. a – Dependence of sorption efficiency on the initial concentration of DOC. b – Mass of sorbed DOC at different initial concentrations of DOC. c – Hydrodynamic radius of NPs before sorption and after sorption at different concentrations of DOC. d – Photographs of test tubes after 15 h of sorption of DOC with different initial concentrations on NPs (without treatment in an ultrasonic bath). d – Movement of NPs with DOC sediment (see 3d, [DOC] = 667 μg/ml) to the side wall of the test tube under the action of a magnet. e – Dependence of sorption efficiency on time. g – Efficiency of DOC release from NPs in PBS at pH 7.4 and 5.5.

Download (501KB)
5. Fig. 4. Cytotoxicity of NPs after DOC sorption at different concentrations. a – Dependence of cell survival on the concentration of NPs loaded at different initial concentrations of DOC (1–5) and unloaded (6). b – Values ​​of СC50 for NPs loaded at different concentrations of DOC (1–6 from a). c – Dependence of cell survival on the concentration of DOC loaded into NPs at different initial concentrations (1–5) and free DOC. d – Values ​​of СC50 for DOC loaded onto NPs at different concentrations (1–6 from c).

Download (528KB)

Copyright (c) 2025 Russian Academy of Sciences