Identification of Bos taurus and Bos grunniens based on SNP
- 作者: Kipen V.N.1, Isakova Z.T.2,3, Patrin M.M.4, Chekirov K.B.3, Aitbaev K.A.2, Karypova A.R.3, Irsaliev M.I.2
-
隶属关系:
- Institute of Genetics and Cytology of the National Academy of Sciences of Belarus
- Research Institute of Molecular Biology and Medicine
- Kyrgyz-Turkish Manas University
- Maxim Medical LLC
- 期: 卷 61, 编号 1 (2025)
- 页面: 74-81
- 栏目: ГЕНЕТИКА ЖИВОТНЫХ
- URL: https://kazanmedjournal.ru/0016-6758/article/view/686168
- DOI: https://doi.org/10.31857/S0016675825010079
- EDN: https://elibrary.ru/VEOPTT
- ID: 686168
如何引用文章
详细
The article examined samples of domestic yak and three breeds of cattle to assess the differentiating potential of the polymorphic variants Chr4:68609356G>T (JAZF1 gene), Chr14:35695388G>T (SLCO5A1 gene) and Chr19:63181970C>G (CEP112 gene). The high accuracy (99.67%), specificity (100%) and sensitivity (100%) of the proposed test model consisting of these three polymorphisms for the identification of domestic yaks and cattle were confirmed. A fast and simple identification method has been developed based on this model using competitive allele-specific PCR (KASP) technology, which can significantly reduce the time and financial costs of molecular genetic analysis, as well as reduce the risk of cross-contamination of samples.
全文:

作者简介
V. Kipen
Institute of Genetics and Cytology of the National Academy of Sciences of Belarus
编辑信件的主要联系方式.
Email: v.kipen@igc.by
白俄罗斯, Minsk
Zh. Isakova
Research Institute of Molecular Biology and Medicine; Kyrgyz-Turkish Manas University
Email: v.kipen@igc.by
哈萨克斯坦, Bishkek; Bishkek
M. Patrin
Maxim Medical LLC
Email: v.kipen@igc.by
俄罗斯联邦, Moscow
K. Chekirov
Kyrgyz-Turkish Manas University
Email: v.kipen@igc.by
哈萨克斯坦, Bishkek
K. Aitbaev
Research Institute of Molecular Biology and Medicine
Email: v.kipen@igc.by
哈萨克斯坦, Bishkek
A. Karypova
Kyrgyz-Turkish Manas University
Email: v.kipen@igc.by
哈萨克斯坦, Bishkek
M. Irsaliev
Research Institute of Molecular Biology and Medicine
Email: v.kipen@igc.by
哈萨克斯坦, Bishkek
参考
- Wang X., Pei J., Xiong L. et al. Genetic diversity, phylogeography, and maternal origin of yak (Bos grunniens) // BMC Genomics. 2024. V. 15. № 25(1). Р. 481. P. 1–13. https://doi.org/10.1186/s12864-024-10378-z
- Chekirov K.B., Isakova Zh.T., Kipen V.N. et al. Differentiation of Bos grunniens and Bos taurus based on STR locus polymorphism // Vavilov J. of Genet. and Breeding. 2023. V. 27(5). Р. 488–494. https://doi.org/10.18699/VJGB-23-59
- Stolpovsky Y.A., Kol N.V., Evsyukov A.N. et al. Comparative analysis of ISSR marker polymorphism in population of YAK (Bos mutus) and in F1 hybrids between yak and cattle in the Sayzn-Altai region // Russ. J. Genet. 2014. V. 50. № 10. Р. 1163–1176. https://doi.org/10.7868/S0016675814100142
- Аль-Кейси Т.В. Сравнительное исследование аллелофонда яков и их гибридов с крупным рогатым скотом с использованием микросателлитов: дис. … канд. биол. наук. М.: ВИЖ, 2011. 97 с.
- Kipen V.N., Snytkov E.V. GENIS – methodological approach for in silico genotyping (validation on Sus scrofa sequencing) // Mathematical Biol. and Bioinf. 2024. V. 19(1). Р. 36–51. https://doi.org/10.17537/2024.19.36
- Sequence Read Archive (SRA) [электронный ресурс]. URL: https://www.ncbi.nlm.nih.gov/sra. Дата доступа: 20.06.2024.
- Ritchie M.D., Hahn L.W., Roodi N. et al. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer // Am. J. Hum. Genet. 2001. V. 69(1). Р. 138–147. https://doi.org/10.1086/321276
- Kalbfleisch T., Petersen J.L., Tait Jr. R.G. et al. Using triallelic SNPs for determining parentage in North American yak (Bos grunniens) and estimating cattle (B. taurus) introgression // F1000Research. 2020. V. 9(1096). Р. 1–26. https://doi.org/10.12688/f1000research.25803.2
- BovineHD DNA Analysis Kit [электронный ресурс]. Режим доступа: https://www.illumina.com/products/by-type/microarray-kits/bovinehd.html. Дата доступа 21.06.2024.
- Eusebi P.G., Sevane N., O’Rourke T. et al. Gene expression profiles underlying aggressive behavior in the prefrontal cortex of cattle // BMC Genomics. 2021. V. 22(245). Р. 1–14. https://doi.org/10.1186/s12864-021-07505-5
- Jin M., Wang H., Liu G. et al. Whole-genome resequencing of Chinese indigenous sheep provides insight into the genetic basis underlying climate adaptation // Genet. Sel. Evol. 2024. V. 2. № 56(1). Р. 1–14. https://doi.org/10.1186/s12711-024-00880-z
- Zhao F., McParland S., Kearney F. et al. Detection of selection signatures in dairy and beef cattle using high-density genomic information // Genet. Select. Evol. 2015. V. 47(1). № 49. Р. 1–12. https://doi.org/10.1186/s12711-015-0127-3
- Johansson A., Marroni F., Hayward C., Franklin C.S. et al. Common variants in the JAZF1 gene associated with height identified by linkage and genome-wide association analysis // Hum. Mol. Genet. 2009. V. 18(2). Р. 373–380. https://doi.org/10.1093/hmg/ddn350
- Lima Verardo L.L. Gene networks from genome wide association studies for pig reproductive traits: Tese (Doutorado em Zootecnia). Viçosa: Universidade Federal de Viçosa, 2015. 170 р. http://www.locus.ufv.br/handle/123456789/6773
- Gaddis K.L.Р., Megonigal J.H., Clay J.S., Wolfe C.W. Genome-wide association study for ketosis in US Jerseys using producer-recorded data // J. Dairy Sci. 2018. V. 101(1). Р. 413–424. https://doi.org/10.3168/jds.2017-13383
- Zeng X. Angus cattle at high altitude: Рulmonary arterial pressure, estimated breeding value and genome-wide association study: Diss. ... PHD. Colorado: Department of Animal Sci., Colorado State Univ., 2016. 259 p.
- Kim S., Cheong H.S., Shin H.D. et al. Genetic diversity and divergence among Korean cattle breeds assessed using a BovineHD single-nucleotide polymorphism chip // Asian-Australas J. Anim. Sci. 2018. V. 31(11). Р. 1691–1699. https://doi.org/10.5713/ajas.17.0419
- Lee J., Mun H., Koo Y. et al. Enhancing genomic prediction fccuracy for body conformation traits in Korean Holstein Cattle // Animals. 2024. V. 14(7). P. 1–14. https://doi.org/10.3390/ani14071052
补充文件
