PI Controller Design for Suppressing Exogenous Disturbances

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

A novel approach is proposed to suppress bounded exogenous disturbances in linear control systems using a PI controller. The approach is based on reducing the original problem to a nonconvex matrix optimization problem. A gradient method for finding the controller’s parameters is derived and its justification is provided. The corresponding recurrence procedure is rather effective and yields quite satisfactory controllers in terms of engineering performance criteria. This paper continues a series of the author’s research works devoted to the design of feedback control laws from an optimization point of view.

Sobre autores

M. Khlebnikov

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Autor responsável pela correspondência
Email: khlebnik@ipu.ru
Moscow, Russia; Dolgoprudnyi, Russia

Bibliografia

  1. Поляк Б.Т., Хлебников М.В. Синтез статического регулятора для подавления внешних возмущений как задача оптимизации // АиТ. 2021. № 9. С. 86-115.
  2. Поляк Б.Т., Хлебников М.В. Новые критерии настройки ПИД-регуляторов // АиТ. 2022. № 11. С. 62-82.
  3. Fatkhullin I., Polyak B. Optimizing Static Linear Feedback: Gradient Method // SIAM J. Control Optim. 2021. V. 59. No. 5. P. 3887-3911.
  4. Поляк Б.Т., Хлебников М.В., Щербаков П.С. Управление линейными системами при внешних возмущениях: Техника линейных матричных неравенств. М.: ЛЕНАНД, 2014.
  5. Поляк Б.Т., Хлебников М.В., Щербаков П.С. Линейные матричные неравенства в системах управления с неопределенностью // АиТ. 2021. № 1. С. 3-54.
  6. Boyd S., El Ghaoui L., Feron E., Balakrishnan V. Linear Matrix Inequalities in System and Control Theory. Philadelphia: SIAM, 1994.
  7. Поляк Б.Т. Введение в оптимизацию. 2-е изд. М.: УРСС, 2014.
  8. Astrom K.J., Hagglund T. Benchmark Systems for PID Control // IFAC Proceedings Volumes. 2000. V. 33. Iss. 4. P. 165-166.
  9. Grant M., Boyd S. CVX: Matlab Software for Disciplined Convex Programming, version 2.1. URL http://cvxr.com/cvx
  10. Хорн Р., Джонсон Ч. Матричный анализ. М.: Мир, 1989.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © The Russian Academy of Sciences, 2023