Effect of chronic stress on the relative level of dopamine receptor gene expression

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background. The regulation of the central dopaminergic system under the influence of chronic stress is disturbed, however, the dynamics of changes in the dopamine receptors expression in the periphery remains poorly understood.

Aim. Evaluation of the different models of chronic stress influence on changes in the relative level of dopamine receptor gene expression in peripheral blood cells of rats during immobilization and intense physical activity.

Material and methods. For 270 days on 88 Wistar rats, the study on the effect of different models of chronic stress on the change in the relative level of Drd1–5 genes expression was performed in four groups: the first control group; the second group was subjected to intensive physical activity in the “Forced swimming with a load” test (7-minute swimming with a load of 8% of body weight 2 times a week); the third group experienced daily 90-minute immobilization for 14 days; the fourth group had combined exposure of physical activity and immobilization. The relative level of dopamine receptor gene expression was determined by real-time polymerase chain reaction after 90, 180, and 270 days of the experiment in peripheral blood cells of the tail vein. The calculation of the relative level of gene expression was carried out based on the Livak method (2–ΔΔCt); the assessment of the difference significance — using a two-sample t-test for independent samples.

Results. The analysis of the relative level of genes encoding D1-type dopamine receptors expression showed that a decrease in the Drd1 gene expression level after 90 days of the experiment was detected only in male rats from immobilization stress and control groups [RQ 0.35 (p=0.003) and 0.21 (p=0.002), respectively], while in males from other groups and females, the activity of this gene did not change significantly throughout the course of the experiment. The relative expression level of Drd5 gene changed only in female rats. In females subjected to intense physical activity, the level of this gene expression increased almost 4 times (RQ 3.82, p=0.005) 90 days after the start of the experiment, and in females of the control group, the transcriptional activity of the gene decreased 4 times after 180 days of the experiment (RQ 0.25, p=0.015). When assessing changes in the activity of genes encoding D2-type receptors for the Drd3 and Drd4 genes, a significant increase in the relative expression level was revealed in all experimental groups, both in males and females, on the 180th day of exposure to stress factors. At the same time, activation of both genes was occurred after 90 days in the control group only in females and persisted up to another 90 days, after which it returned to the initial level. Expression of the Drd2 gene wasn't detected in rat blood cells.

Conclusion. The relative level of expression of D1- and D2-like receptor genes in rat peripheral blood cells depends on the type of chronic stress and has pronounced sexual dimorphism.

Full Text

Restricted Access

About the authors

Elena V. Valeeva

Kazan (Volga Region) Federal university; Kazan state medical university

Author for correspondence.
Email: vevaleeva@ya.ru
ORCID iD: 0000-0001-7080-3878
SPIN-code: 4670-8980
Scopus Author ID: 57195580617
ResearcherId: W-8036-2019

Junior Researcher, Central research laboratory, Kazan State Medical University; Assistant, Depart. of Biochemistry, Biotechnology and Pharmacology

Russian Federation, Kazan, Russia; Kazan, Russia

Irina I. Semina

Kazan state medical university

Email: seminai@mail.ru
ORCID iD: 0000-0003-3515-0845

Prof., Depart. of Pharmacology, Head, Central research laboratory

Russian Federation, Kazan, Russia

Antonina G. Galeeva

Kazan (Volga Region) Federal university; Federal Center for toxicological, radiation, and biological safety — Federal Research Veterinary Institute

Email: antonina-95@yandex.ru
ORCID iD: 0000-0003-2650-6459

Cand. Sci. (Vet.), Junior Researcher, Open Lab “Markers of Pathogenesis”; Junior Resear­cher

Russian Federation, ­Kazan, Russia; ­Kazan, Russia

Albina D. Mukhametshina

Kazan (Volga Region) Federal university

Email: albinam1709@gmail.com
ORCID iD: 0000-0002-5296-1861

Bachelor, Depart. of Biochemistry, Biotechnology and Pharmacology

Russian Federation, Kazan, Russia

Regina D. Mukhametshina

Kazan (Volga Region) Federal university

Email: 1709mrd@gmail.com
ORCID iD: 0000-0002-5797-993X

Bachelor, Depart. of Biochemistry, Biotechnology and Pharmacology

Russian Federation, Kazan, Russia

Olga A. Kravtsova

Kazan (Volga Region) Federal university

Email: okravz@yandex.ru
ORCID iD: 0000-0002-4227-008X

Cand. Sci. (Biol.), Assoc. Prof., Depart. of Biochemistry, Biotechnology and Pharmacology

Russian Federation, Kazan, Russia

References

  1. Dyuzhikova NA, Daev EV. Genome and stress-reaction in animals and humans. Ecological Genetics. 2018;16(1):4–26. (In Russ.) doi: 10.17816/ecogen1614-26.
  2. Everly JrGS, Rosenfeld R. The nature and treatment of the stress response: A practical guide for clinicians. Springer Science & Business Media; 2012. 232 p.
  3. Kuznetsov SL, Kapito­nova MYu, Degtyar YuV, Zagrebin VL. Stress and neuroendocrine system: modern morphological and functio­nal aspects. Vestnik Volgogradskogo gosudarstvennogo medicinskogo universiteta. 2008;(2):10–15. (In Russ.)
  4. Juster RP, McEwen BS, Lupien SJ. Allostatic load biomarkers of chronic stress and impact on health and cognition. Neurosci Biobehav Rev. 2010;35(1):2–16. doi: 10.1016/j.neubiorev.2009.10.002.
  5. Wang X, Xu J, Wang Q, Ding D, Wu L, Li Y, Wu C, Meng H. Chronic stress induced depressive-like beha­viors in a classical murine model of Parkinson's disease. Behav Brain Res. 2020;399:112816. doi: 10.1016/j.bbr.2020.112816.
  6. Chauvet-Gelinier JC, Bonin B. Stress, anxiety and depression in heart disease patients: A major challenge for cardiac rehabilitation. Ann Phys Rehabil Med. 2017;60(1):6–12. doi: 10.1016/j.rehab.2016.09.002.
  7. Baik JH. Stress and the dopaminergic reward system. Exp Mol Med. 2020;52(12):1879–1890. doi: 10.1038/s12276-020-00532-4.
  8. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG. Dopamine receptors: from structure to function. Physiol Rev. 1998;78(1):189–225. doi: 10.1152/physrev.1998.78.1.189.
  9. Jaber M, Robinson SW, Missale C, Caron MG. Dopamine receptors and brain function. Neuropharmaco­logy. 1996;35(11):1503–1519. doi: 10.1016/S0028-3908(96)00100-1.
  10. Azadmarzabadi E, Haghighatfard A, Mohammadi A. Low resilience to stress is associated with candidate gene expression alterations in the dopaminergic signalling pathway. Psychogeriatrics. 2018;18(3):190–201. doi: 10.1111/psyg.12312.
  11. Bloomfield MAP, McCutcheon RA, Kempton M, Freeman TP, Howes O. The effects of psychosocial stress on dopaminergic function and the acute stress response. Elife. 2019;8:e46797. doi: 10.7554/elife.46797.
  12. Holly EN, Miczek KA. Ventral tegmental area dopamine revisited: effects of acute and repeated stress. Psychopharmacology. 2016;233(2):163–186. doi: 10.1007/s00213-015-4151-3.
  13. Beaton JR, Feleki V. Effect of diet and water temperature on exhaustion time of swimming rats. Can J Physiol Pharmacol. 1967;45(2):360–363. doi: 10.1139/y67-042.
  14. Karkishchenko NN, Karkishchenko VN, Shustov EB, Berzin IA, Kapanadze GD, Fokin YuV, Seme­nov KhKh, Stankova NV, Bolotova VTs. Biome­ditsinskoe (doklinicheskoe) izuchenie lekarstvennykh ­sredstv vliyayushchikh na fizicheskuyu rabotosposobnost'. Metodicheskie rekomendatsii. (Biomedical (preclinical) study of drugs affecting physical performance. Metho­dological recommendations.) Moscow: Nauchnyy tsentr biomeditsinskikh tekhnologiy Federal'nogo mediko-biolo­gicheskogo agentstva; 2017. 133 p. (In Russ.)
  15. Bhatia N, Jaggi AS, Singh N, Anand P, Dhawan R. Adaptogenic potential of curcumin in experimental chro­nic stress and chronic unpredictable stress-induced me­mory deficits and alterations in functional homeostasis. J Nat Med. 2011;65(3–4):532–543. doi: 10.1007/s11418-011-0535-9.
  16. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402–408. doi: 10.1006/meth.2001.1262.
  17. McCarthy MM, Arnold AP. Reframing sexual differentiation of the brain. Nat Neurosci. 2011;14(6):677–683. doi: 10.1038/nn.2834.
  18. Voltarelli FA, Gobatto CA, de Mello MAR. Minimum blood lactate and muscle protein of rats during swi­mming ­exercise. Biol Sport. 2008;25(1):23–34.
  19. Ammar A, Trabelsi K, Boukhris O, Glenn JM, Bott N, Masmoudi L, Hakim A, Chtourou H, Driss T, Hoekelmann A, El Abed K. Effects of aerobic-, anaerobic- and combined-based exercises on plasma oxidative stress biomarkers in healthy untrained young adults. Int J Environ Res Public Health. 2020;17(7):2601. doi: 10.3390/ijerph17072601.
  20. Fernandez JL. Analysis of the cold-water restraint procedure in gastric ulceration and body temperature. Physiol Behav. 2004;82:827–833. doi: 10.1016/j.physbeh.2004.06.016.
  21. Valeeva EV, Valeeva IKh, Semina II, Nikitin DO, Mukhamedzhanova AG, Mukhametshina AD, Kravtsova OA. The effect of chro­nic stress on biochemical parameters in rats of different ages. Vestnik biotekhnologii i fiziko-khimicheskoy biologii im YuA Ovchinnikova. 2020;16(3):18–24. (In Russ.)
  22. Zhang Y, Zhu X, Bai M, Zhang L, Xue L, Yi J. Maternal deprivation enhances behavioral vulnerability to stress associated with miR-504 expression in nucleus accumbens of rats. PLoS One. 2013;8(7):e69934. doi: 10.1371/journal.pone.0069934.
  23. Calipari ES, Juarez B, Morel C, Walker DM, Cahill ME, Ribeiro E, Roman-Ortiz C, Ramakrishnan C, Deisseroth K, Han MH, Nestler EJ. Dopaminergic dyna­mics underlying sex-specific cocaine reward. Nat Commun. 2017;8:13877. doi: 10.1038/ncomms13877.
  24. Andersen SL, Rutstein M, Benzo JM, Hostetter JC, Teicher MH. Sex differences in dopamine receptor overproduction and elimination. Neuroreport. 1997;8(6):1495–1497. doi: 10.1097/00001756-199704140-00034.
  25. Orendain-Jaime EN, Ortega-Ibarra JM, López-Pérez SJ. Evidence of sexual dimorphism in D1 and D2 dopaminergic receptors expression in frontal cortex and stria­tum of young rats. Neurochem Int. 2016;100:62–66. doi: 10.1016/j.neuint.2016.09.001.
  26. Kovalenko IL, Smagin DA, Galyamina AG, Orlov YL, Kudryavtseva NN. Changes in the expression of dopaminergic genes in brain structures of male mice exposed to chro­nic social defeat stress: an RNA-Seq study. Mol Biol (Mosk). 2016;50(1):161–163. doi: 10.1134/S0026893316010088.
  27. Kirillova GP, Hrutkay RJ, Shurin MR, Shurin GV, Tourkova IL, Vanyukov MM. Dopamine receptors in human lymphocytes: radioligand binding and quantitative RT-PCR assays. J Neurosci Methods. 2008;174(2):272–280. doi: 10.1016/j.jneumeth.2008.07.018.
  28. Li Y, Kuzhikandathil EV. Molecular characterization of individual D3 dopamine receptor-expressing cells isolated from multiple brain regions of a novel mouse model. Brain Struct Funct. 2012;217(4):809–833. doi: 10.1007/s00429-012-0383-8.
  29. Xiang L, Szebeni K, Szebeni A, Klimek V, Stockmeier CA, Karolewicz B, Kalbfleisch J, Ordway GA. Dopamine receptor gene expression in human amygdaloid nuclei: elevated D4 receptor mRNA in major depression. Brain Res. 2008;1207:214–224. doi: 10.1016/j.brainres.2008.02.009.
  30. Valenti O, Cifelli P, Gill KM, Grace AA. Antipsychotic drugs rapidly induce dopamine neuron depolarization block in a developmental rat model of schizophrenia. J Neurosci. 2011;31(34):12330–12338. doi: 10.1523/jneurosci.2808-11.2011.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Рис. 1. Изменение относительного уровня экспрессии гена дофаминового рецептора 1-го типа (Drd1) в крови у самок и самцов крыс в контрольной группе и группах, подвергавшихся физической нагрузке (ФН), иммобилизационному стрессу (ИС) и комбинированному воздействию стрессовых факторов на 90, 180 и 270 сут от начала наблюдения. Уровень р отмечен звёздочкой: *p ≤0,005

Download (34KB)
3. Рис. 2. Изменение относительного уровня экспрессии гена дофаминового рецептора 5-го типа (Drd5) в крови у самок и самцов крыс в контрольной группе и группах, подвергавшихся физической нагрузке (ФН), иммобилизационному стрессу (ИС) и комбинированному воздействию стрессовых факторов на 90, 180 и 270 сут от начала наблюдения. Уровень р отмечен звёздочками: *p ≤0,05, **p ≤0,005

Download (28KB)
4. Рис. 3. Изменение относительного уровня экспрессии гена дофаминового рецептора 3-го типа (Drd3) в крови у самок и самцов крыс в контрольной группе и группах, подвергавшихся физической нагрузке (ФН), иммобилизационному стрессу (ИС) и комбинированному воздействию стрессовых факторов на 90, 180 и 270 сут от начала наблюдения. Уровень р отмечен звёздочками: *p ≤0,05, **p ≤0,005, ***p ≤0,001

Download (14KB)
5. Рис. 4. Изменение относительного уровня экспрессии гена дофаминового рецептора 4-го типа (Drd4) в крови у самок и самцов крыс в контрольной группе и группах, подвергавшихся физической нагрузке (ФН), иммобилизационному стрессу (ИС) и комбинированному воздействию стрессовых факторов на 90, 180 и 270 сут от начала наблюдения. Уровень р отмечен звёздочками: *p ≤0,05, **p ≤0,001, ***p ≤0,0001

Download (26KB)

© 2022 Eco-Vector





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies