Comparative characteristics of various fibrous materials in in vitro experiments

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Aim. Comparative assessment of the effect of fibrous materials on cell cultures RAW264.7 and BEAS-2B.

Methods. The effects of various fibrous materials — single-walled carbon nanotubes of two types (SWCNT-1 and SWCNT-2), differing in morphological characteristics, and chrysotile asbestos as a positive control — was assessed on two cell lines macrophages RAW 264.7 and human bronchial epithelium BEAS-2B cells. The studied materials’ concentration range for experiments on cells was selected taking into account the SWCNT content in the air of the working area and the subsequent modeling of SWCNT deposition in the human respiratory tract. Suspensions of the studied materials were prepared based on cell culture media by ultrasonication. Cytotoxicity assessment after 48 hours of incubation was performed by using the MTS colorimetric assay. The expression level of apoptosis mar¬kers was assessed by immunoblotting using the corresponding monoclonal antibodies. Visualization of SWCNT-1, SWCNT-2 and chrysotile asbestos in BEAS-2B cell cultures was carried out by improved dark-field microscopy.

Results. According to dark-field microscopy, all the studied fibrous materials were found on the surface or cytoplasm of the cells. SWCNT and chrysotile asbestos did not have a direct cytotoxic effect in the MTS assay and did not induce apoptosis according to the results of Western blotting in cell cultures of RAW264.7 macrophages and BEAS-2B bronchial epithelium. In the cells of the bronchial epithelium (BEAS-2B) that showed greater sensitivity, a slight increase in the expression of pro-apoptotic protein PARP, which was more pronounced for shorter SWCNT-2, was revealed.

Conclusion. Both types of SWCNTs, despite the differences in morphological characteristics, demonstrated similar effects in in vitro experiments; this result, with its further verification, can have an important practical application in justifying approaches to determining the safety criteria for single-walled carbon nanotubes as a class of nanomaterials of the same type.

Full Text

Restricted Access

About the authors

G A Timerbulatova

Kazan State Medical University; Center of Hygiene and Epidemiology in the Republic of Tatarstan

Author for correspondence.
Email: ragura@mail.ru
ORCID iD: 0000-0002-2479-2474
Russian Federation, Kazan, Russia; Kazan, Russia

P D Dunaev

Kazan State Medical University

Email: dunaevpavel@mail.ru
Russian Federation, Kazan, Russia

A M Dimiev

Kazan Federal University

Email: ayrat_dimiev@mail.ru
Russian Federation, Kazan, Russia

G F Gabidinova

Kazan State Medical University

Email: gabidinova26@yandex.ru
Russian Federation, Kazan, Russia

N N Khaertdinov

Kazan Federal University

Email: khaertdinofnn@gmail.com
Russian Federation, Kazan, Russia

R F Fakhrullin

Kazan Federal University

Email: kazanbio@gmail.com
Russian Federation, Kazan, Russia

S V Boichuk

Kazan State Medical University

Email: boichuksergei@mail.ru
Russian Federation, Kazan, Russia

L M Fatkhutdinova

Kazan State Medical University

Email: liliya.fatkhutdinova@gmail.com
Russian Federation, Kazan, Russia

References

  1. Carbon nanotubes. https://www.transparency market research.com/pressrelease/carbon-nano-tubes-market.htm (дата обращения: 12.06.2021).
  2. Liu Z., Tabakman S., Welsher K., Dai H. Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Res. 2009; 2: 85–120. doi: 10.1007/s12274-009-9009-8.
  3. Bianco A., Kostarelos K., Prato M. Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol. 2005; (6): 674–679. doi: 10.1016/j.cbpa.2005.10.005.
  4. Williams J.G.K., Kubelik A.R., Livak K.J., Rafalski J.A., Tingey S.V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990; (22): 6531–6535. doi: 10.1093/nar/18.22.6531.
  5. Kisin E.R., Murray A.R., Keane M.J., Shi X.C., Schwegler-Berry D., Gorelik O., Arepalli S., Castranova V., Wallace W.E., Kagan V.E., Shvedova A.A. Single-walled carbon nanotubes: geno- and cytotoxic effects in lung fibroblast V79 cells. J. Toxicol. Environ Health A. 2007; (24): 2071–2079. doi: 10.1080/15287390701601251.
  6. Magdolenova Z., Collins A., Kumar A., Dhawan A., Stone V., Dusinska M. Mechanisms of genotoxi­city. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology. 2014; 8 (3): 233–278. doi: 10.3109/17435390.2013.773464.
  7. Li Y., Doak S.H., Yan J., Chen D.H., Zhou M., Mittelstaedt R.A., Chen Y., Li C., Chen T. Factors affecting the in ­vitro micronucleus assay for evaluation of nanomaterials. Mutagenesis. 2017; 32 (1): 151–159. doi: 10.1093/mutage/gew040.
  8. Herzog E., Casey A., Lyng F.M., Chambers G., ­Byrne H.J., Davoren M. A new approach to the toxicity tes­ting of carbon-based nanomaterials — the clonoge­nic assay. Toxicol. Letters. 2007; 174 (1–3): 49–60. doi: 10.1016/j.toxlet.2007.08.009.
  9. Park E.J., Zahari N.E., Lee E.W., Song J., Lee J.H., Cho M.H., Kim J.H. SWCNTs induced autophagic cell death in human bronchial epithelial cells. Toxicol. in vitro. 2014; 28 (3): 442–450. doi: 10.1016/j.tiv.2013.12.012.
  10. Khaliullin T.O., Kisin E.R., Murray R.A., Zalyalov R.R., Shvedova A.A., Fatkhutdinova L.M. Toxic effects of carbon nanotubes in macrophage and bronchial epithelium cell cultures. Tomsk State University journal of biology. 2014; (1): 199–210. (In Russ.)
  11. Davoren M., Herzog E., Casey A., Cottineau B., Chambers G., Byrne H.J., Lyng F.M. In vitro toxicity eva­luation of single walled carbon nanotubes on human A549 lung cells. Toxicol. in vitro. 2007; 21 (3): 438–448. doi: 10.1016/j.tiv.2006.10.007.
  12. Pulskamp K., Diabaté S., Krug H.F. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol. Letters. 2007; 168 (1): 58–74. doi: 10.1016/j.toxlet.2006.11.001.
  13. Wörle-Knirsch J.M., Pulskamp K., Krug H.F. Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Letters. 2006; 6 (6): 1261–1268. doi: 10.1021/nl060177c.
  14. Fujita K., Fukuda M., Endoh S., Kato H., Maru J., Nakamura A., Uchino K., Shinohara N., Obara S., Nagano R., Horie M., Kinugasa S., Hashimoto H., Kishimoto A. Physical properties of single — wall carbon nanotubes in cell culture and their dispersal due to alveolar epithelial cell response. Toxicol. Mechanisms аnd Methods. 2013; 23 (8): 598–609. doi: 10.3109/15376516.2013.811568.
  15. Clift M.J., Endes C., Vanhecke D., Wick P., Gehr P., Schins R.P., Petri-Fink A., Rothen-Rutishauser B. A comparative study of different in vitro lung cell culture systems to assess the most beneficial tool for screening the potential adverse effects of carbon nanotubes. Toxicol. Sci. 2014; 137 (1): 55–64. doi: 10.1093/toxsci/kft216.
  16. Witasp E., Shvedova A.A., Kagan V.E., Fadeel B. Single-walled carbon nanotubes impair human macrophage engulfment of apoptotic cell ­corpses. Inhalation Toxicol. 2009; 21 (Suppl. 1): 131–136. doi: 10.1080/08958370902942574.
  17. Khaliullin T.O., Kisin E.R., Murray A.R., Yanamala N., Shurin M.R., Gutkin D.W., Fatkhutdinova L.M., Kagan V.E., Shvedova A.A. Mediation of the single-walled carbon nanotubes induced pulmonary fibrogenic response by osteopontin and TGF-β1. Experim. Lung Res. 2017; 43 (8): 311–326. doi: 10.1080/01902148.2017.1377783.
  18. Murr L.E., Garza K.M., Soto K.F., Carrasco A., Powell T.G., Ramirez D.A., Guerrero P.A., Lopez D.A., Venzor J.3rd. Cytotoxicity assessment of some carbon nanotubes and related carbon nanoparticle aggregates and the implications for anthropogenic carbon nanotube aggregates in the environment. Intern. J. Envir. Res. Public Health. 2005; 2 (1): 31–42. doi: 10.3390/ijerph2005010031.
  19. Migliore L., Saracino D., Bonelli A., Colognato R., R.D’Errico M., Magrini A., Bergamaschi A., Bergamaschi E. Carbon nanotubes induce oxidative DNA da­mage in RAW264.7 cells. Envir. Mol. Mutagen. 2010; 51: 294–303. doi: 10.1002/em.20545.
  20. Dong P.X., Wan B., Guo L.H. In vitro toxicity of acid-functionalized single-walled carbon nanotubes: effects on murine macrophages and gene expression profiling. Nanotoxicology. 2012; 6 (3): 288–303. doi: 10.3109/17435390.2011.573101.
  21. Donaldson K., Aitken R., Tran L., Stone V., Duffin R., Forrest G., Alexander A. Carbon nanotubes: a review of their properties in relation to pulmonary toxi-­cology and workplace safety. Toxicol. Sci. 2006; 92 (1): 5–22. doi: 10.1093/toxsci/kfj130.
  22. National Institute for Occupational Safety and Health (NIOSH). https://www.cdc.gov/niosh/index.htm (access date: 12.06.2021).
  23. Multiple-Path Particle Dosimetry Model (MPPD v 3.04). https://www.ara.com/products/multiple-path-particle-dosimetry-model-mppd-v-304 (access date: 14.06.2021).
  24. Li Y., Boraschi D. Endotoxin contamination: a key ­element in the interpretation of nanosafety ­studies. Nanome­dicine (Lond.). 2016; 11 (3): 269. DOI: 10.221/nnm.15.19619.
  25. State Pharmacopoeia of the Russian Federation XIV edition (approved by order of the Ministry of Health of the Russian Federation on October 31, 2018). https://minzdrav.gov.ru/ministry/61/11/gosudarstvennaya-farmakopeya-rossiyskoy-federatsii-xiv-izdaniya (access date: 14.06.2021)
  26. Timerbulatova G., Dimiev A.M., Khamidullin T., Boichuk S.V., Dunaev P., Fakhrullin R., Khaertdinov N.N., Porfiryeva N.N., Khaliullin T., Fatkhutdinova L. Dispersion of single-walled carbon nanotubes in biocompatible environments. Nanotechnologies in Russia. 2020; 15: 437–444. doi: 10.1134/S1995078020040163.
  27. Methodical instructions MU 1.2.2635-10 “Medical and biological assessment of the safety of nanomaterials” (approved by the Chief State Sanitary Doctor of the Russian Federation G.G. Onishchenko on May 24, 2010). https://docs.cntd.ru/document/1200083582 (access date: 14.06.2021)
  28. Cherednichenko Y.V., Nigamatzyanova L.R., Akhatova F.S., Rozhina E.V., Fakhrullin R.F., Evtugyn V.G. Silver nanoparticle synthesis using ultrasound and halloysite to create a nanocomposite with antibacterial pro­perties. Nanotechnologies in Russia. 2019; 14 (9–10): 456–461. doi: 10.1134/S1995078019050021.
  29. Fakhrullin R., Nigamatzyanova L., Fakhrullina G. Dark-field/hyperspectral microscopy for detecting nanoscale particles in environmental nanotoxicology research. Sci. Total Environment. 2021; 772: 145 478. doi: 10.1016/j.scitotenv.2021.145478.
  30. Park E.J., Zahari N.E., Kang M.S., Lee S.J., Lee K., Lee B.S., Yoon C., Cho M.H., Kim Y., Kim J.H. Toxic response of HIPCO single-walled carbon nanotubes in mice and RAW264.7 macrophage cells. Toxicol. Lett. 2014; 229 (1): 167–177. doi: 10.1016/j.toxlet.2014.06.015.
  31. Kharissova O.V., Kharisov B.I., de Casas Ortiz E.G. Dispersion of carbon nanotubes in water and non-aqueous solvents. RSC Adv. 2013; 3: 24 812–24 852. doi: 10.1039/c3ra43852.
  32. Ghosh M., Murugadoss S., Janssen L., Cokic S., Mathyssen C., Van Landuyt K., Janssens W., Carpentier S., Godderis L., Hoet P. Distinct autophagy-apoptosis rela­ted pathways activated by Multi-walled (NM 400) and ­Single-walled carbon nanotubes (NIST-SRM2483) in human bronchial epithelial (16HBE14o-) cells. J. Hazard Mater. 2020; 387: 121691. doi: 10.1016/j.jhazmat.2019.121691.
  33. Shvedova A.A., Yanamala N., Kisin E.R., Tkach A.V., Murray A.R., Hubbs A., Chirila M.M., Keohavong P., Sycheva L.P., Kagan V.E., Castranova V. Long-term effects of carbon containing engineered nanomaterials and asbestos in the lung: one year postexposure comparisons. Am. J. Physiol. Lung Cell Mol. Physiol. 2014; 306 (2): 170–182. doi: 10.1152/ajplung.00167.2013.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Рис. 1. Цитотоксическая активность исследуемых материалов в различных концентрациях (мкг/мл) в отношении клеток линии RAW 264.7; среднее значение ± стандартное отклонение выживаемости клеток в MTS-тесте после 48-часовой экспозиции исследуемых материалов: А — ОУНТ-1; Б — ОУНТ-2; В — хризотил-асбест; p >0,05 для всех сравнений с 0 мкг/мл в контроле

Download (99KB)
3. Рис. 2. Цитотоксическая активность исследуемых материалов в различных концентрациях (мкг/мл) в отношении клеток линии BEAS-2B; среднее значение ± стандартное отклонение выживаемости клеток в MTS-тесте после 48-часовой экспозиции исследуемых материалов: А — ОУНТ-1; Б — ОУНТ-2; В — хризотил-асбест; p >0,05 для всех сравнений с 0 мкг/мл в контроле

Download (102KB)
4. Рис. 3. Картина репрезентативного вестерн-блота на клетках линии RAW 264.7 (инкубация 48 ч): А — ОУНТ-1; Б — ОУНТ-2 и хризотил-асбест; материалы использовали в концентрациях 0,0006, 0,04 и 2,5 мкг/мл; маркёры апоптоза — расщеплённые формы каспазы-3 и поли-АДФ(рибоза)-полимеразы (ПАРП); актин отражает уровень белка в образцах; доксорубицин (Д) — 0,5 мкг/мл

Download (22KB)
5. Рис. 4. Картина репрезентативного вестерн-блота на клетках линии BEAS-2B (инкубация 48 ч): А — ОУНТ-1; Б — ОУНТ-2; В — хризотил-асбест; материалы использовали в концентрациях 0,0006, 0,04 и 2,5 мкг/мл; маркёр апоптоза — расщепленная форма поли-АДФ(рибоза)-полимеразы (ПАРП); актин — отражает уровень белка в образцах; доксорубицин (Д) — 0,5 мкг/мл

Download (27KB)
6. Рис. 5. Визуализация проникновения ОУНТ-1, ОУНТ-2 и хризотил-асбеста в цитоплазму клеток посредством темнопольной микроскопии. Клетки BEAS-2B под действием исследуемых материалов в концентрации 2,5 мкг/мл (48 ч экспозиции): А — контроль (клеточная среда BEGM), Б — ОУНТ-1; В — ОУНТ-2; Г — хризотил-асбест

Download (37KB)

© 2021 Timerbulatova G.A., Dunaev P.D., Dimiev A.M., Gabidinova G.F., Khaertdinov N.N., Fakhrullin R.F., Boichuk S.V., Fatkhutdinova L.M.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies