Нерешённые вопросы хронической обструктивной болезни лёгких: перспективы генетических исследований



Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Распространённость хронической обструктивной болезни лёгких в мире среди лиц старше 40 лет составляет около 10%. Наряду с этим неуклонное прогрессирование заболевания, приводящее к ранней инвалидизации, определяет высокую медико-социальную значимость заболевания. Требуется дальнейшее изучение факторов риска, включая генетические особенности хронической обструктивной болезни лёгких, с целью разработки эффективной первичной профилактики среди предрасположенных лиц. Целью нашего исследования явился обзор зарубежной и отечественной научной медицинской литературы, посвящённой генетическим полиморфизмам, ассоциированным с хронической обструктивной болезнью лёгких, и их роли в патогенезе заболевания, а также анализ фармакогенетических аспектов терапии — влияние генетических полиморфизмов на эффективность и безопасность лекарственных препаратов. Проанализированы полнотекстовые публикации за период с 2000 по 2024 год, размещённые в базах данных PubMed, eLibrary.Ru, Google Scholar, ResearchGate. Представлен анализ наиболее важных генетических исследований хронической обструктивной болезни лёгких, включая данные о сочетании заболевания с коморбидными состояниями и особенностях фармакогенетики препаратов. Исследования, посвящённые наследственным факторам, убедительно подтверждают, что генетическая предрасположенность существенно повышает риск развития заболевания. Реакция на лекарственные препараты зависит от множества факторов, среди которых важную роль играют генетические особенности, определяющие выбор терапии. Полногеномные исследования ассоциаций в крупных выборках пациентов позволяют выявить достоверно связанные с заболеванием локусы и играют важную роль в уточнении патогенеза. Шкалы генетического риска, строящиеся на основе объединения эффектов нескольких однонуклеотидных полиморфизмов, показали свою эффективность в прогнозировании риска и тяжести хронической обструктивной болезни лёгких. В дальнейшем такие шкалы могут иметь клиническое значение в рамках предиктивной медицины. Изучение генетических полиморфизмов открывает перспективы для разработки персонализированных медицинских подходов к прогнозированию, профилактике и лечению хронической обструктивной болезни лёгких.

Об авторах

Рустэм Фидагиевич Хамитов

Казанский государственный медицинский университет

Email: rhamitov@mail.ru
ORCID iD: 0000-0001-8821-0421
SPIN-код: 5362-0356

д-р мед. наук, профессор, заведующий, каф. внутренних болезней

Россия, г. Казань

Фирюза Ильдаровна Саттарова

Казанский государственный медицинский университет

Автор, ответственный за переписку.
Email: fifuza@mail.ru
ORCID iD: 0009-0002-1157-0984
SPIN-код: 8579-1605

ассистент, каф. внутренних болезней

Россия, г. Казань

Эмилия Сергеевна Егорова

Казанский государственный медицинский университет

Email: jastspring@yandex.ru
ORCID iD: 0000-0002-6210-4660
SPIN-код: 8706-8630

младший научный сотрудник; лаб. генетики старения и долголетия Центральной научно-исследовательской лаборатории

Россия, г. Казань

Список литературы

  1. Agusti A, Celli BR, Criner GJ, et al. Global Initiative for Chronic Obstructive Lung Disease 2023 Report: GOLD Executive Summary. Eur Respir J. 2023;61(4):2300239. doi: 10.1183/13993003.00239-2023 EDN: INNNID
  2. Al Wachami N, Guennouni M, Iderdar Y, et al. Estimating the global prevalence of chronic obstructive pulmonary disease (COPD): a systematic review and meta-analysis. BMC Public Health. 2024;24(1):297. doi: 10.1186/s12889-024-17686-9 EDN: ZCCRJA
  3. Avdeev SN, Leshchenko IV, Aisanov ZR. Chronic obstructive pulmonary disease (COPD 2024). Clinical guidelines (short version). Journal of Respiratory Medicine. 2025;1(2):5–16. doi: 10.17116/respmed202510215
  4. Bhatt SP, Casaburi R, Agustí À, et al. Chronic obstructive pulmonary disease: hiding in plain sight, a Statement from the COPD Foundation Medical and Scientific Advisory Committee. Lancet Respir Med. 2023;11(12):1041–1043. doi: 10.1016/s2213-2600(23)00436-8
  5. Celli BR, Fabbri LM, Aaron SD, et al. An Updated Definition and Severity Classification of Chronic Obstructive Pulmonary Disease Exacerbations: The Rome Proposal. Am J Respir Crit Care Med. 2021;204(11):1251–1258. doi: 10.1164/rccm.202108-1819PP EDN: GPOTVG
  6. Abdullaeva NM, Fesenko OV, Belousov AS, et al. Epidemiology and Pathogenesis of Pathology Associated with Chronic Obstructive Pulmonary Disease. Effective pharmacotherapy. 2024;20(16):63–67. doi: 10.33978/2307-3586-2024-20-16-63-67 EDN: LSGWAI
  7. Chen H, Luo X, Du Y, et al. Association between chronic obstructive pulmonary disease and cardiovascular disease in adults aged 40 years and above: data from NHANES 2013–2018. BMC pulmonary medicine. 2023;23(1):318. doi: 10.1186/s12890-023-02606-1 EDN: MZRCIY
  8. Voulgaris A, Archontogeorgis K, Steiropoulos P, Papanas N. Cardiovascular Disease in Patients with Chronic Obstructive Pulmonary Disease, Obstructive Sleep Apnoea Syndrome and Overlap Syndrome. Current vascular pharmacology. 2021;19(3):285–300. doi: 10.2174/1570161118666200318103553 EDN: JBZGZI
  9. Rogliani P, Ritondo BL, Laitano R, et al. Advances in understanding of mechanisms related to increased cardiovascular risk in COPD. Exp Rev Respirat Med. 2021;15(1):59–70. doi: 10.1080/17476348.2021.1840982 EDN: KXGKVF
  10. Balbirsingh V, Mohammed AS, Turner AM, Newnham M. Cardiovascular disease in chronic obstructive pulmonary disease: a narrative review. Thorax. 2022:thoraxjnl-2021-218333. doi: 10.1136/thoraxjnl-2021-218333 EDN: UFARUB
  11. Papaporfyriou A, Bartziokas K, Gompelmann D, et al. Cardiovascular Diseases in COPD: From Diagnosis and Prevalence to Therapy. Life. 2023;13(6):1299. doi: 10.3390/life13061299 EDN: OSSIDA
  12. Martinez-Garcia MÁ, Faner R, Oscullo G, et al. Chronic bronchial infection and incident cardiovascular events in chronic obstructive pulmonary disease patients: A long-term observational study. Respirology. 2021;26(8):776–785. doi: 10.1111/resp.14086 EDN: CYVWUL
  13. Anthonisen NR, Connett JE, Enright PL, Manfreda J; Lung Health Study Research Group. Hospitalizations and mortality in the Lung Health Study. Am J Respirat Crit Care Med. 2002;166(3):333–339. doi: 10.1164/rccm.2110093
  14. Zhou JJ, Cho MH, Castaldi PJ, et al. Heritability of chronic obstructive pulmonary disease and related phenotypes in smokers. Am J Respirat Crit Care Med. 2013;188(8):941–947. doi: 10.1164/rccm.201302-0263OC
  15. Silverman EK. Genetics of COPD. Annual review of physiology. 2020;82:413–431. doi: 10.1146/annurev-physiol-021317-121224 EDN: XGTMZD
  16. Cho MH, Hobbs BD, Silverman EK. Genetics of chronic obstructive pulmonary disease: understanding the pathobiology and heterogeneity of a complex disorder. Lancet Respir Med. 2022;10(5):485–496. doi: 10.1016/S2213-2600(21)00510-5 EDN: YCQOON
  17. Dasí F. Alpha-1 antitrypsin deficiency. Medicina clinica. 2024;162(7):336–342. doi: 10.1016/j.medcli.2023.10.014 EDN: KQXTKH
  18. Larshina EA, Milovanova NV, Kamenets EA. Alpha-1-antitrypsin deficiency: diagnosis and treatment (literature review). Medical genetics. 2021;20(1):12–24. doi: 10.25557/2073-7998.2021.01.12-24 EDN: UIUUUF
  19. Pillai SG, Ge D, Zhu G, et al. A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. PLoS Genetics. 2009;5(3):e1000421. doi: 10.1371/journal.pgen.1000421 EDN: MNEZBJ
  20. Sakornsakolpat P, Prokopenko D, Lamontagne M, et al. Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations. Nat Gen. 2019;51(3):494–505. doi: 10.1038/s41588-018-0342-2 EDN: WQQNCY
  21. Hobbs BD, de Jong K, Lamontagne M, et al. Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis. Nat Gen. 2017;49(3):426–432. doi: 10.1038/ng.3752 EDN: YXPCKP
  22. Hobbs BD, Parker MM, Chen H, et al. Exome Array Analysis Identifies a Common Variant in IL27 Associated with Chronic Obstructive Pulmonary Disease. Am J Respirat Crit Care Med. 2016;194(1):48–57. doi: 10.1164/rccm.201510-2053OC EDN: XTSQQH
  23. Chen G, Jin Y, Chu C, et al. A cross-tissue transcriptome-wide association study reveals GRK4 as a novel susceptibility gene for COPD. Sci Rep. 2024;14(1):28438. doi: 10.1038/s41598-024-80122-w EDN: QALGSM
  24. Wang M, Zhang Y, Xu M, et al. Roles of TRPA1 and TRPV1 in cigarette smoke -induced airway epithelial cell injury model. Free Radic Biol Med. 2019;134:229–238. doi: 10.1016/j.freeradbiomed.2019.01.004 EDN: RTSZTE
  25. Kuvaeva EE, Mertsalov IB, Simonova OB. Transient receptor potential (TRP) family of channel proteins. Russian Journal of Developmental Biology. 2022;53(5):309–320. doi: 10.31857/S0475145022050044 EDN: XFJJUC
  26. Kim W, Prokopenko D, Sakornsakolpat P, et al. Genome-Wide Gene-by-Smoking Interaction Study of Chronic Obstructive Pulmonary Disease. Am J Epidemiol. 2021;190(5):875–885. doi: 10.1093/aje/kwaa227 EDN: NNPEEQ
  27. Hopkins RJ, Duan F, Gamble GD, et al. Chr15q25 genetic variant (rs16969968) independently confers risk of lung cancer, COPD and smoking intensity in a prospective study of high-risk smokers. Thorax. 2021;76(3):272–280. doi: 10.1136/thoraxjnl-2020-214839 EDN: MDMMOF
  28. Lee YJ, Choi S, Kwon SY, et al. A Genome-Wide Association Study in Early COPD: Identification of One Major Susceptibility Loci. Int J Chron Obstruct Pulmon Dis. 2020;15:2967–2975. doi: 10.2147/COPD.S269263
  29. Cho MH, Hobbs BD, Silverman EK. Genetics of chronic obstructive pulmonary disease: understanding the pathobiology and heterogeneity of a complex disorder. Lancet Respir Med. 2022;10(5):485–496. doi: 10.1016/S2213-2600(21)00510-5 EDN: YCQOON
  30. Zhang J, Hobbs BD, Silverman EK, et al. Polygenic Risk Score Added to Conventional Case Finding to Identify Undiagnosed Chronic Obstructive Pulmonary Disease. JAMA. 2025;333(9):784–792. doi: 10.1001/jama.2024.24212 EDN: ZUELIQ
  31. Zhang J, Xu H, Qiao D, et al. A polygenic risk score and age of diagnosis of COPD. Eur Respir J. 2022;60(3):2101954. doi: 10.1183/13993003.01954-2021 EDN: PIQEUW
  32. Li N, Li X, Liu M, et al. Sex differences in comorbidities and mortality risk among patients with chronic obstructive pulmonary disease: a study based on NHANES data. BMC Pulmon Med. 2023;23(1):481. doi: 10.1186/s12890-023-02771-3 EDN: UJXYCZ
  33. Joo J, Himes B. Gene-Based Analysis Reveals Sex-Specific Genetic Risk Factors of COPD. AMIA Annual Symposium proceedings. AMIA Annu Symp Proc. 2022;2021:601–610. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC8861659/
  34. Hardin M, Cho MH, Sharma S, et al. Sex-Based Genetic Association Study Identifies CELSR1 as a Possible Chronic Obstructive Pulmonary Disease Risk Locus among Women. Am J Respir Cell Mol Biol. 2017;56(3):332–341. doi: 10.1165/rcmb.2016-0172OC EDN: YXPBTR
  35. Xu L, Bian W, Gu XH, Shen C. Genetic polymorphism in matrix metalloproteinase-9 and transforming growth factor-β1 and susceptibility to combined pulmonary fibrosis and emphysema in a Chinese population. Kaohsiung J Med Sci. 2017;33(3):124–129. doi: 10.1016/j.kjms.2016.12.004
  36. Wain LV, Shrine N, Artigas MS, et al. Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets. Nat Gen. 2017;49(3):416–425. doi: 10.1038/ng.3787 EDN: YXQWLD
  37. Vegas-Sánchez-Ferrero G, José Estépar RS. Statistical Framework for the Definition of Emphysema in CT Scans: Beyond Density Mask. Med Image Comput Comput Assist Interv. 2018;11071:821–829. doi: 10.1007/978-3-030-00934-2_91
  38. Manichaikul A, Hoffman EA, Smolonska J, et al. Genome-wide study of percent emphysema on computed tomography in the general population. The Multi-Ethnic Study of Atherosclerosis Lung/SNP Health Association Resource Study. Am J Respir Crit Care Med. 2014;189(4):408–418. doi: 10.1164/rccm.201306-1061OC EDN: SRIKUL
  39. Cho MH, Castaldi PJ, Hersh CP, et al. A Genome-Wide Association Study of Emphysema and Airway Quantitative Imaging Phenotypes. Am J Respir Crit Care Med. 2015;192(5):559–569. doi: 10.1164/rccm.201501-0148OC
  40. Zhu Z, Wang X, Li X, et al. Genetic overlap of chronic obstructive pulmonary disease and cardiovascular disease-related traits: a large-scale genome-wide cross-trait analysis. Respir Res. 2019;20(1):64. doi: 10.1186/s12931-019-1036-8 EDN: QTQKVO
  41. Axson EL, Bottle A, Cowie MR, Quint JK. Relationship between heart failure and the risk of acute exacerbation of COPD. Thorax. 2021;76(8):807–814. doi: 10.1136/thoraxjnl-2020-216390 EDN: XLCFEC
  42. Güder G, Rutten FH. Comorbidity of heart failure and chronic obstructive pulmonary disease: more than coincidence. Curr Heart Fail Rep. 2014;11(3):337–346. doi: 10.1007/s11897-014-0212-x EDN: QQQNRH
  43. Jiang R, Sun C, Yang Y, et al. Causal relationship between chronic obstructive pulmonary disease and heart failure: A Mendelian randomization study. Heart Lung. 2024;67:12–18. doi: 10.1016/j.hrtlng.2024.04.007 EDN: YRXATG
  44. Uffelmann E, Huang QQ, Munung NS, et al. Genome-wide association studies. Nature reviews methods primers. 2021;1:1–21. doi: 10.1038/s43586-021-00056-9
  45. Kim S, Oesterreich S, Kim S, et al. Integrative clustering of multi-level omics data for disease subtype discovery using sequential double regularization. Biostatistics. 2017;18(1):165–179. doi: 10.1093/biostatistics/kxw039
  46. Barnes PJ. Oxidative stress-based therapeutics in COPD. Redox biology. 2020;33:101544. doi: 10.1016/j.redox.2020.101544 EDN: LYMAMX
  47. Morrow JD, Qiu W, Chhabra D, et al. Identifying a gene expression signature of frequent COPD exacerbations in peripheral blood using network methods. BMC Med Genomics. 2015;8:1. doi: 10.1186/s12920-014-0072-y EDN: ZYNEQB
  48. Aggarwal T, Wadhwa R, Thapliyal N, et al. Oxidative, inflammatory, genetic, and epigenetic biomarkers associated with chronic obstructive pulmonary disorder. J Cell Physiol. 2019;234(3):2067–2082. doi: 10.1002/jcp.27181
  49. Wang R, Xu J, Liu H, Zhao Z. Peripheral leukocyte microRNAs as novel biomarkers for COPD. Int J Chron Obstruct Pulmon Dis. 2017;12:1101–1112. doi: 10.2147/COPD.S130416
  50. Zhang Z, Wang J, Li Y, et al. Proteomics and metabolomics profiling reveal panels of circulating diagnostic biomarkers and molecular subtypes in stable COPD. Respir Res. 2023;24(1):73. doi: 10.1186/s12931-023-02349-x EDN: DTAEKJ
  51. Dickson RP, Martinez FJ, Huffnagle GB. The role of the microbiome in exacerbations of chronic lung diseases. Lancet. 2014;384(9944):691–702. doi: 10.1016/S0140-6736(14)61136-3
  52. Budden KF, Shukla SD, Rehman SF, et al. Functional effects of the microbiota in chronic respiratory disease. The Lancet. Respir Med. 2019;7(10):907–920. doi: 10.1016/S2213-2600(18)30510-1 EDN: YULISS
  53. Wang Z, Yang Y, Yan Z, et al. Multi-omic meta-analysis identifies functional signatures of airway microbiome in chronic obstructive pulmonary disease. ISME J. 2020;14(11):2748–2765. doi: EDN: PGUJKC
  54. Hardin M, Cho MH, McDonald ML, et al. A genome-wide analysis of the response to inhaled β2-agonists in chronic obstructive pulmonary disease. The Pharmacogenomics Journal. 2016;16(4):326–335. doi: 10.1038/tpj.2015.65
  55. Matera MG, Rogliani P, Novelli G, Cazzola M. The impact of genomic variants on patient response to inhaled bronchodilators: a comprehensive update. Expert Opin Drug Metab Toxicol. 2023;19(5):285–295. doi: 10.1080/17425255.2023.2221848 EDN: UXJPBO
  56. Celli BR, Christenson S, Rabe KF, et al. Current Smoker: A Clinical COPD Phenotype Affecting Disease Progression and Response to Therapy. Am J Respir Crit Care Med. 2025;211(5):729–736. doi: 10.1164/rccm.202407-1379CI
  57. Taylor DR, Drazen JM, Herbison GP, et al. Asthma exacerbations during long term beta agonist use: influence of beta (2) adrenoceptor polymorphism. Thorax. 2000;55(9):762–767. doi: 10.1136/thorax.55.9.762
  58. Lima JJ. Do genetic polymorphisms alter patient response to inhaled bronchodilators? Exp Opin Drug Metabol Toxicol. 2014;10(9):1231–1240. doi: 10.1517/17425255.2014.939956
  59. Mustafina MKh, Tsvetkova OA. Pharmacogenetic effect of ADRB2 gene polymorphism on therapeutic response in chronic obstructive pulmonary disease. Pulmonologiya. 2013;(3):21–24. doi: 10.18093/0869-0189-2013-0-3-21-24 EDN: RBJUHP
  60. Kim WJ, Hersh CP, DeMeo DL, et al. Genetic association analysis of COPD candidate genes with bronchodilator responsiveness. Respirat Med. 2009;103(4):552–557. doi: 10.1016/j.rmed.2008.10.025
  61. Kehinde O, Ramsey LB, Gaedigk A, Oni-Orisan A. Advancing CYP2D6 Pharmacogenetics through a Pharmacoequity Lens. Clin Pharmacol Therap. 2023;114(1):69–76. doi: 10.1002/cpt.2890 EDN: EARWIK
  62. Obeidat M, Faiz A, Li X, et al. The pharmacogenomics of inhaled corticosteroids and lung function decline in COPD. Eur Respirat J. 2019;54(6):1900521. doi: 10.1183/13993003.00521-2019
  63. Russo P, Tomino C, Santoro A, et al. FKBP5 rs4713916: A Potential Genetic Predictor of Interindividual Different Response to Inhaled Corticosteroids in Patients with Chronic Obstructive Pulmonary Disease in a Real-Life Setting. Int J Mol Sci. 2019;20(8):2024. doi: 10.3390/ijms20082024
  64. Marcolongo F, Scarlata S, Tomino C, et al. Psycho-cognitive assessment and quality of life in older adults with chronic obstructive pulmonary disease-carrying the rs4713916 gene polymorphism (G/A) of gene FKBP5 and response to pulmonary rehabilitation: a proof of concept study. Psychiatr genet. 2022;32(3):116–124. doi: 10.1097/YPG.0000000000000308 EDN: JVANWC
  65. Lei Y, Gao Y, Chen J, et al. GLCCI1 rs37973: a potential genetic predictor of therapeutic response to inhaled corticosteroids in Chinese chronic obstructive pulmonary disease patients. Sci Rep. 2017;7:42552. doi: 10.1038/srep42552 EDN: YXHFPZ
  66. Xiong S, Li L. The effect of CYP1A2 gene polymorphism on the metabolism of theophylline. Exp Ther Med. 2018;15(1):109–114. doi: 10.3892/etm.2017.5396 EDN: YKLWQJ
  67. Trushenko NV, Lavginova ВВ, Belkina OS, Avdeev SN. Targeted therapy as a new perspective in the treatment of COPD. Meditsinskiy Sovet. 2024;18(20):10–16. doi: 10.21518/ms2024-519 EDN: EKLCZI
  68. Singh D, Higham A, Beech A. The relevance of eosinophils in chronic obstructive pulmonary disease: inflammation, microbiome and clinical outcomes. J Leukoc Biol. 2024;116(5):927–946. doi: 10.1093/jleuko/qiae153 EDN: DYQQDW
  69. Rabe KF, Martinez FJ, Bhatt SP, et al. AERIFY-1/2: two phase 3, randomised, controlled trials of itepekimab in former smokers with moderate-to-severe COPD. ERJ Open Research. 2024;10(5):00718–2023. doi: 10.1183/23120541.00718-2023

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор, 2025


СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ЭЛ № ФС 77 - 75008 от 01.02.2019.