Slc6a4, Tph2, Htr1b, Htr2a genes expression in the mouse spinal cord after microgravity exposure simulation on earth

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Aim. To determine the level of gene expression of the serotonergic neurotransmission system (Slc6a4, Tph2, Htr1b, Htr2a) in the cervical and lumbar enlargement of the spinal cord for mice after 30-day microgravity exposure simulation by using the antiorthostatic unloading model by Morey-Holton et al. and a subsequent 7-dayrecovery period.

Methods. The experimental animals were divided into three groups: “Unloading” group with mice undergoes hindlimb-unloading procedure for 30 days (n=5); “Recovery” group with mice undergoes hindlimb-unloading procedure for 30 days, followed by readaptation within 7 days (n=5); “Control” group with mice kept at standard vivarium conditions (n=5). The expression level of genes encoding synaptic proteins in the central nervous system was estimated by a real-time polymerase chain reaction.

Results. There were no statistically significant differences between the studied groups regarding the Tph2, Htr1b, and Htr2a expressions in the cervical and lumbar enlargement of the spinal cord. Compared to the “Control” group, a statistically significant increase (6.3 times) in the level of Slc6a4 expression in the lumbar spinal cord was revealed after microgravity exposure simulation (“Unloading” group), followed by a 3-fold decrease during the readaptation period (“Recovery” group ).

Conclusion. The expression level of the Slc6a4 gene, which encodes carrier protein involved in the function of serotonergic synapses, may indicate the potential involvement of this neurotransmitter system in the pathogenesis of movement disorders after microgravity exposure simulation on earth.

Full Text

Restricted Access

About the authors

M S Kuznetsov

Kazan State Medical University

Author for correspondence.
Email: qmaxksmu@yandex.ru
Russian Federation, Kazan, Russia

A N Lisyukov

Kazan State Medical University

Email: qmaxksmu@yandex.ru
Russian Federation, Kazan, Russia

M A Davleeva

Kazan State Medical University

Email: qmaxksmu@yandex.ru
Russian Federation, Kazan, Russia

A A Izmailov

Kazan State Medical University

Email: qmaxksmu@yandex.ru
Russian Federation, Kazan, Russia

References

  1. Edgerton V.R., Roy R.R. Invited review: gravitational biology of the neuromotor systems: a perspective to the next era. J. Appl. Physiol. 2000; 89: 1224–1231. doi: 10.1152/jappl.2000.89.3.1224.
  2. Hides J., Lambrecht G., Ramdharry G. et al. Parallels between astronauts and terrestrial patients — Taking phy­siotherapy rehabilitation “To infinity and beyond”. Musculoskelet. Sci. Pract. 2017; 27 (1): S32–S37. doi: 10.1016/j.msksp.2016.12.008.
  3. Scott J.M., Warburton D.E.R., Williams D. et al. Challenges, concerns and common problems: physiological consequences of spinal cord injury and microgravity. Spinal Cord. 2011; 49: 4–16. doi: 10.1038/sc.2010.53.
  4. Kuznetsov M.S., Lisukov A.N., Rizvanov A.A. et al. Bioinformatic study of transcriptome changes in the mice lumbar spinal cord after the 30-day spaceflight and subsequent 7-day readaptation on Earth: New insights into molecular mechanisms of the hypogravity motor syndrome. Front. Pharmacol. 2019; 10: 747. doi: 10.3389/fphar.2019.00747.
  5. Lisyukov A.N., Izmaylov A.A., Kuznetsov M.S. et al. Spinal cord neuroplasticity in tail-suspended mice. Aviakosmicheskaya i ekolo­gicheskaya meditsina. 2019; 53 (6): 94–97. (In Russ.) doi: 10.21687/0233-528X-2019-53-6-94-97.
  6. Perrin F.E., Noristani H.N. Serotonergic mechanisms in spinal cord injury. Exp. Neurol. 2019; 318: 174–191. doi: 10.1016/j.expneurol.2019.05.007.
  7. Cope T.C. Motor neurobiology of the spinal cord. 1 ed. CRC Press. 2001; 360 р.
  8. Gackière F., Vinay L. Serotonergic modulation of post-synaptic inhibition and locomotor alternating pattern in the spinal cord. Front. Neural. Circuits. 2014; 8: 102. doi: 10.3389/fncir.2014.00102.
  9. Ghosh M., Pearse D.D. The role of the serotonergic system in locomotor recovery after spinal cord injury. Front. Neural. Circuits. 2014; 8: 151. doi: 10.1016/j.expneurol.2019.05.007.
  10. Bardoni R. Serotonergic modulation of nociceptive circuits in spinal cord dorsal horn. Curr. Neuropharmacol. 2019; 17: 1133–1145. doi: 10.2174/1570159X17666191001123900.
  11. Murphy D.L., Moya P.R. Human serotonin transporter gene (SLC6A4) variants: their contributions to understanding pharmacogenomic and other functional G×G and G×E differences in health and disease. Curr. Opin. Pharmacol. 2011; 11: 3–10. doi: 10.1016/j.coph.2011.02.008.
  12. Pratelli M., Pasqualetti M. Serotonergic neurotransmission manipulation for the understanding of brain development and function: Learning from Tph2 genetic models. Biochimie. 2019; 161: 3–14. doi: 10.1016/j.biochi.2018.11.016.
  13. Palacios J.M. Serotonin receptors in brain revisi­ted. Brain Res. 2016; 1645: 46–49. doi: 10.1016/j.brainres.2015.12.042.
  14. D’Amico J.M., Li Y., Bennett D.J. et al. Reduction of spinal sensory transmission by facilitation of 5-HT1B/D receptors in noninjured and spinal cord-injured humans. J. Neurophysiol. 2013; 109: 1485–1493. doi: 10.1152/jn.00822.2012.
  15. Gackière F., Vinay L. Serotonergic modulation of post-synaptic inhibition and locomotor alternating pattern in the spinal cord. Front. Neural Circuits. 2014; 8: 102. doi: 10.3389/fncir.2014.00102.
  16. Genin A.M., Ilyin E.A., Kaplansky A.S. Bio­ethic rules of research with humans and animals in aviation, space and marine medicine. Aviakosmicheskaya i ekolo­gicheskaya meditsina. 2001; 35 (4):14–20. (In Russ.)
  17. Morey-Holton E.R., Globus R.K. Hindlimb unloa­ding rodent model: technical aspects. J. Appl. Physiol. 2002; 92: 1367–1377. doi: 10.1152/japplphysiol.00969.2001.
  18. Andreev-Andrievskiy A., Popova A., Boyle R. et al. Mice in Bion-M 1 space mission: Training and selection. PLoS One. 2014; 9 (8): e104830. doi: 10.1371/journal.pone.0104830.
  19. R: A Language and Environment for Statistical Computing. Foundation for Statistical Computing. Austria, Vienna. 2017. Available online www.r-project.org (access date: 14.02.2019).
  20. Bos R., Sadlaoud K., Boulenguez P. et al. Activation of 5-HT2A receptors upregulates the function of the neuronal K-Cl cotransporter KCC2. Proc. Natl. Acad. Sci. USA. 2013; 2 (110 (1)): 348–353. doi: 10.1073/pnas.1213680110.
  21. Gerin C.G., Hill A., Hill S. et al. Serotonin release variations during recovery of motor function after a spinal cord injury in rats. Synapse. 2010; 64 (11): 855–861. doi: 10.1002/syn.20802.
  22. Hayashi Y., Jacob-Vadakot S., Dugan E.A. et al. 5-HT precursor loading, but not 5-HT receptor agonists, increases motor function after spinal cord contusion in adult rats. Exp. Neurol. 2010; 221 (1): 68–78. doi: 10.1016/j.exp­neurol.2009.10.003.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Рис. 1. Мышь, находящаяся в состоянии опорной разгрузки (модель антиортостатического вывешивания Morey-Holton и соавт.)

Download (15KB)
3. Рис. 2. Сравнительный анализ экспрессии генов серотонинергической медиаторной системы в шейном и поясничном отделах спинного мозга мышей; *p=0,0063

Download (34KB)

© 2020 Kuznetsov M.S., Lisyukov A.N., Davleeva M.A., Izmailov A.A.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies