Effect of L-arginine and L-name on lysosomal cysteine proteases activity and lysosomal membranes permeability in rat aorta

Cover Page


Cite item

Full Text

Abstract

Aim. To study the effect of L-arginine and its analogue N-nitro-L-arginine methyl ester (L-NAME) alone and in combination on lysosomal cysteine proteolysis and lysosomal membranes state in rat aorta.

Methods. The study was performed on male Wistar rats kept under standard vivarium conditions and divided into three control and three experimental groups of 8 animals each. The experimental samples included groups with L-arginine and/or L-NAME administration. The indicators were studied in the rat aorta homogenate precipitating and non precipitating fractions. Acid phosphatase activity was determined by a standardized method of «end point», the cathepsins B, L and H activity was studied by spectrofluorimetric method.

Results. When simulating the changes of nitric oxide synthesis level using L-arginine, the increase of the total cathepsins activity was detected, acid phosphatase lability coefficient was reduced, what is characterized by general lysosomal membranes stabilization. L-NAME group, in contrast, is characterized by a decrease in the cathepsin B and H activity indicators, differences from arginine group were observed in the cathepsin H in lysosomal and general fractions, lysosomal membrane is labile. Combined drugs administration reduces the total cathepsins activity, while there is an increase of the acid phosphatase total activity, all indicators suggest lysosomal membranes labilization.

Conclusion. L-arginine at a dose of 500 mg/kg causes increase in the total cathepsins B, L and H activity in rat aorta due to lysosomal fraction; L-arginine action leads to lysosomal membranes stabilization; L-NAME group in cathepsin H shows a decrease in the cathepsins secretion level with decreased total activity due to both factions; combined administration of arginine + L-NAME group in cathepsin B is characterized by an increase in secretion due to lysosomes membrane labilization.

About the authors

A I Arapova

Ryazan State Medical University named after academician I.P. Pavlov

Author for correspondence.
Email: Asiaarapova@mail.ru

M A Fomina

Ryazan State Medical University named after academician I.P. Pavlov

Email: Asiaarapova@mail.ru

References

  1. Марков Х.М. L-аргинин - оксид азота в терапии болезней сердца и сосудов. Кардиология. 2005; (6): 87-95.
  2. Покровский А.А., Тутельян В.А. Лизосомы. М.: Наука. 1976; 378 с.
  3. Покровский М.В., Покровская Т.Г., Корчаков В.И. и др. Эндотелиопротекторные эффекты L-аргинина при моделировании дефицита окиси азота. Эксперим. и клин. фармакол. 2008; 71 (2): 29-31.
  4. Фомина Н.В., Фомина М.А. Оценка связи активности лизосомальных цистеиновых протеиназ плазмы крови и показателей эндотелиальной дисфункции у пациентов с заболеваниями вен нижних конечностей. Наука молодых Eruditio Juvenium. 2014; (1): 60-67.
  5. Чикин В.Г., Ерохина А.А., Пчелинцев В.В. Активность лизосомальных ферментов при неосложнённом послеродовом периоде и эндометрите. Рос. мед.-биол. вестн. им. акад. И.П. Павлова. 2014; (2): 32-36.
  6. Barrett A.J., Kirschke H. Cathepsin B, cathepsin H, cathepsin L. Methods in enzymol. 1981; 80: 535-561. http://dx.doi.org/10.1016/S0076-6879(81)80043-2
  7. Conus S., Hans-Uwe S. Cathepsins and their involvement in immune responses. Swiss medical weekly. 2010; 1-12. http://dx.doi.org/10.4414/smw.2010.13042
  8. Qi Xing, Lijun Zhang, Travis Redman. Nitric oxide regulates cell behavior on an interactive cell-derived extracellular matrix scaffold. J. Biomed. Materials Res. 2015; (12): 3807-3814. http://dx.doi.org/10.1002/jbm.a.35524
  9. Stephen G. Hummel, Anthony J. Fischer, Sean M. Martin et al. Nitric oxide as a cellular antioxidant: A little goes a long way. Free Radical Biol. Med. 2006; 40: 501-506. http://dx.doi.org/10.1016/j.freeradbiomed.2005.08.047
  10. Szabõ C., Ischiropoulos H., Radi R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nature Rev. Drug Discovery. 2006; 6: 662-680. http://dx.doi.org/10.1038/nrd2222
  11. Terman A., Kurz T., Gustafsson B. et al. Lysosomal labilization. IUBMB Life. 2006; 58 (9): 531-539. http://dx.doi.org/10.1080/15216540600904885
  12. Turk М. Cysteine cathepsins: From structure, function and regulation to new frontiers. Biochim. Biophys. Acta. 2012; 1824 (1): 68-88. http://dx.doi.org/10.1016/j.bbapap.2011.10.002
  13. Visek W.J. Arginine needs, physiological state and usual diets. A reevaluation. J. Nutrition. 1986; 116 (1): 36-46.

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2016 Arapova A.I., Fomina M.A.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies