Developing mathematical models for cardiovascular system functional assessments

Cover Page


Cite item

Full Text

Abstract

Aim. Development of mathematical models of circulation (considering anomaly in hemorheology) allowing to diagnose functional condition of vessels/cardiovascular system.

Methods. Echocardiography, mathematical modeling, sedimentation and rheology laws, human mechanics and physiology methods were used for developing mathematical models.

Results. The following mathematical models were obtained: for determination of colloid dispersive blood system viscosity, considering concentration of dispersive phase (blood cells) and blood structure formation; velocity of inconvenient blood cells sedimentation depending on flow velocity of sediment and cell concentration; parameters of blood elasticity and viscosity as a connection between the velocity change and blood viscosity, Young`s elasticity and change tension; blood filtration in vessels (modified form of Darcy`s law) considering tension and changes of destroyed and undestroyed colloid blood system structure velocity. It was shown that impairments of blood flow velocity leads to blood cells sedimentation and thrombus structure formation, which is not moving according to Newton’s law. New indicators for diagnosing functional condition of vessels and estimating the severity of vascular insufficiency are introduced.

Conclusion. Developed hemorheologic models allow to adequately estimate human cardiovascular bloodflow.

About the authors

E A Rzaev

Ankara University, Ankara, Turkey

Author for correspondence.
Email: rasulovsakit@gmail.com

S R Rasulov

Azerbaijan State Oil Academy, Baku, Azerbaijan

Email: rasulovsakit@gmail.com

A G Rzaev

Institute of Control System of the Azerbaijan National Academy of Sciences, Baku, Azerbaijan

Email: rasulovsakit@gmail.com

References

  1. Алёхин М.Н., Сидоренко Б.А. Современные подходы к эхокардиографической оценке систолической функции сердца // Кардиология. - 2007. - Т. 47, №7. - С. 4-12.
  2. Вилкенсхоф У., Крук И. Справочник по эхокардиографии, пер. с нем. - М.: Медицинская литература, 2008. - 229 с.
  3. Киселёв И.Н., Семисалов Б.В., Бибердорф Э.А. и др. Модульное моделирование сердечно-сосудистой системы человека // Матем. биол. и биоинформ. - 2012. - Т. 7, №2. - С. 703-736.
  4. Матвеенко В.Е., Кирсанов Е.А. Вязкость и структура дисперсных систем // Вестн. Моск. ун-та. Сер. 2: Химия. - 2011. - Т. 52, №4. - С. 243-276.
  5. Млюк В.Г., Млюк С.Э. Основные принципы гемодинамики и ультразвукового исследования сосудов. Руководство по ультразвуковой диагностике / Под ред. В.В. Митькова. -. М.: Видар, 1997. - Т. 4. - С. 158-220.
  6. Райдинг Э. Эхокардиография. Практическое руководство. 3-е изд. Перевод с англ. - М.: МЕДпресс-информ, 2013. - 280 c.
  7. Kelbaliev G.I., Rzaev A.G., Guseinov A.F., Kasumov A.A. Sedimentation of particles from a consentrated dispersed flow. - Plenum Publishing Corporation, 1992. - P. 1064-1067.

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2015 Rzaev E.A., Rasulov S.R., Rzaev A.G.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies