ON A СOMBINATORIAL APPLICATION OF ULTRAFILTER THEORY: A NEW CONSTRUCTION OF TRIANGLE-FREE GRAPHS WITH ARBITRARILY LARGE CHROMATIC NUMBER

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The paper describes a new method for constructing triangle-free graphs with an arbitrarily large chromatic number. The method is substantiated using properties of various types of ultrafilter extensions of functions and predicates.

Sobre autores

N. Polyakov

HSE University

Email: npolyakov@hse.ru
Moscow, Russia

Bibliografia

  1. P. Erdo s, Graph Theory and Probability. Canadian Journal of Mathematics, 11, 34–38 (1959).
  2. А.А. Зыков, О некоторых свойствах линейных комплексов. Математический сборник, 24 (66), 163–188 (1949).
  3. J. Mycielski, Sur le coloriage des graphs. Colloquium Mathematicum 3, 161–162 (1955).
  4. M. Shtibitz, Beitrage zur Theorie der farbungskritschen Graphen. Technische Universitat Ilmenau, Habilitation Thesis (1985).
  5. L. Lova´sz, Kneser’s conjecture, chromatic number, and homotopy. Journal of Combinatorial Theory, Series A, 25 (3), 319–324 (1978).
  6. J.E. Greene, A new short proof of Kneser’s conjecture. American Mathematical Monthly, 109 (10), 918–920 (1978).
  7. J. Matousˇek, A combinatorial proof of Kneser’s conjecture. Combinatorica, 24 (1), 163–170 (2004).
  8. J.P. Burling, On coloring problems of families of prototypes. Boulder: University of Colorado, PhD thesis (1965).
  9. A. Pawlik, J. Kozik, et al, Triangle-free intersection graphs of line segments with large chromatic number. Journal of Combinatorial Theory, Series B, 105(5), 6–10 (2014).
  10. L. Lova´sz, On chromatic number of finite set– systems. Acta Math. Acad. Sci. Hungar, 19, 59– 67 (1968).
  11. P. O’Donnell, Arbitrary girth, 4-chromatic unit distance graphs in the plane. I. Graph description. Geombinatorics, 9 (3), 145–152 (2000).
  12. P. O’Donnell, Arbitrary girth, 4-chromatic unit distance graphs in the plane. II. Graph embedding. Geombinatorics, 9 (4), 180–193 (2000).
  13. A.M. Raigorodskii, Cliques and cycles in distance graphs and graphs of diameters. Discrete Geometry and Algebraic Combinatorics. AMS. Contemp. Math., 625, 93–109 (2014).
  14. N. Alon, A. Kupavskii, Two notions of unit distance graphs. Journal of Combinatorial Theory, Series A, 125, 1–17 (2014).
  15. W.W. Comfort, S. Negrepontis, The theory of ultrafilters. Springer, Berlin (1974).
  16. N. Hindman, D. Strauss, Algebra in the Stone– Cech Compactification. 2nd ed., revised and expanded, W. de Gruyter, Berlin–N.Y. (2012).
  17. V. Goranko, Filter and ultrafilter extensions of structures: universal-algebraic aspects. Preprint (2007).
  18. D.I. Saveliev, Ultrafilter extensions of models. Lecture Notes in AICS, 6521, 162–177 (2011).
  19. D.I. Saveliev, On ultrafilter extensions of models. In: S.-D. Friedman et al. (eds.). The Infinity Project Proc. CRM Documents 11, Barcelona, 599–616 (2012).
  20. N.L. Poliakov, D.I. Saveliev, On ultrafilter extensions of first-order models and ultrafilter interpretations. Arch. Math. Logic 60, 625–681 (2021).
  21. N.L. Polyakov, On the Canonical Ramsey Theorem of Erdos and Rado and Ramsey Ultrafilters. Dokl. Math. 108, 392–401 (2023).
  22. B. Jo´nsson, A. Tarski, Boolean algebras with operators. Part I: Amer. J. Math. 73 (4), 891–939 (1951); Part II: ibid. 74 (1), 127–162 (1952).
  23. N.G. de Bruijn, P. Erdo s, A colour problem for infinite graphs and a problem in the theory of relations. Proceedings of the Section of Sciences of the Koninklijke Nederlandse Akademie van Wetenschappen. Series A, mathematical sciences, 54(5), 371–373 (1951).
  24. I. Shur, U¨ ber die Kongruenz xm + ym = zm (mod p). Jahresber. Deutsche Math.-Verein. 25, 114–116 (1916).
  25. A. Sisto, Exponential Triples. The Electronic Journal of Combinatorics, 18 (1), P147 (2011).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025