О КАНОНИЧЕСКОЙ РАМСЕЕВСКОЙ ТЕОРЕМЕ ЭРДЁША И РАДО И РАМСЕЕВСКИХ УЛЬТРАФИЛЬТРАХ
- Авторы: Поляков Н.Л.1
 - 
							Учреждения: 
							
- Национальный исследовательский университет “Высшая школа экономики”
 
 - Выпуск: Том 513 (2023)
 - Страницы: 76-87
 - Раздел: МАТЕМАТИКА
 - URL: https://kazanmedjournal.ru/2686-9543/article/view/647906
 - DOI: https://doi.org/10.31857/S2686954323600805
 - EDN: https://elibrary.ru/CKOEZZ
 - ID: 647906
 
Цитировать
Полный текст
Аннотация
Мы даем характеризацию рамсеевских ультрафильтров на ω в терминах функций \(f:{{\omega }^{n}} \to \omega \) и их ультрарасширений. Для этого мы доказываем, что для каждого разбиения \(\mathcal{P}\) множества [ω]n существует такое конечное разбиение \(\mathcal{Q}\) множества \({{[\omega ]}^{{2n}}}\), что каждое однородное для разбиения \(\mathcal{Q}\) множество \(X \subseteq \omega \) есть конечное объединение множеств канонических для разбиения \(\mathcal{P}\).
Об авторах
Н. Л. Поляков
Национальный исследовательский университет “Высшая школа экономики”
							Автор, ответственный за переписку.
							Email: npolyakov@hse.ru
				                					                																			                												                								Россия, Москва						
Список литературы
- Ramsey F.P. On a problem of formal logic // Proc. London Math. Soc. 1930. V. 30. P. 264–286.
 - Matet P. An easier proof of the Canonical Ramsey Theorem // Colloquium Mathematicum. 2016, 216. V. 145. P. 187–191.
 - Erdős P., Rado R. A combinatorial theorem // J. London Math. Soc. 1950. V. 25. P. 249–255.
 - Rado R. Note on Canonical Partitions // Bul. of the London Math. Soc. 1986. V. 18:2. P. 123–126.
 - Mileti J. R. The canonical Ramsey theorem and computability theory // Trans. Amer. Math. Soc. 2008. V. 360. P. 1309–1341.
 - Erdős P., Rado R. Combinatorial Theorems on Classifications of Subsets of a Given Set // Proc. London Math. Soc. 1952. V. s3–2:1. P. 417–439.
 - Lefmann H., Rödl V. On Erdős-Rado numbers // Combinatorica. 1995. V. 15. P. 85–104.
 - Comfort W.W., Negrepontis S. The theory of ultrafilters. Springer, Berlin, 1974.
 - Jeh T. Set theory. The Third Millennium Edition, revised and expanded. Springer, 2002.
 - Graham R.L., Rothschild B.L., Spencer J.H. Ramsey Theory. 2rd ed. John Wiley and Sons, NY, 1990.
 - Goranko V. Filter and ultrafilter extensions of structures: universal-algebraic aspects. Preprint, 2007.
 - Saveliev D.I. Ultrafilter extensions of models // LNCS. 2011. V. 6521. P. 162–177.
 - Jeh T. Lectures in Set Theory: With Particular Emphasis on the Method of Forcing. Springer-Verlag. 1971. Русский перевод: Йех Т. Теория множеств и метод форсинга. Издательство “Мир”, М., 1973.
 - Wimmers E. The Shelah P-point independence theorem // Israel Journal of Mathematics. 1982. V. 43:1. P. 28–48.
 - Hindman N., Strauss D. Algebra in the Stone–Čech Compactification. 2nd ed., revised and expanded, W. de Gruyter, Berlin–N.Y., 2012.
 - Polyakov N.L., Shamolin M.V. On a generalization of Arrow’s impossibility theorem // Dokl. Math. 2014. V. 89. P. 290–292.
 - Saveliev D.I. On ultrafilter extensions of models // In: S.-D. Friedman et al. (eds.). The Infinity Project Proc. CRM Documents 11, Barcelona, 2012. P. 599–616.
 - Saveliev D.I. On idempotents in compact left topological universal algebras // Topology Proc. 2014. V. 43. P. 37–46.
 - Poliakov N.L., Saveliev D.I. On two concepts of ultrafilter extensions of first-order models and their generalizations // LNCS. 2017. V. 10388. P. 336–348.
 - Poliakov N.L., Saveliev D.I. On ultrafilter extensions of first-order models and ultrafilter interpretations // Arch. Math. Logic. 2021. V. 60. P. 625–681.
 - Saveliev D.I., Shelah S. Ultrafilter extensions do not preserve elementary equivalence // Math. Log. Quart. 2019. V. 65. P. 511–516.
 
Дополнительные файлы
				
			
						
						
						
					
						
									



