On an invariant of pure braids

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Using the recoupling theory, we define a representation of the pure braid group and show that it is not trivial.

Texto integral

Acesso é fechado

Sobre autores

V. Manturov

Moscow Institute of Physics and Technology; Nosov Magnitogorsk State Technical University

Autor responsável pela correspondência
Email: vomanturov@yandex.ru

Moscow Center for Fundamental and Applied Mathematics 

Rússia, Moscow; Magnitogorsk

I. Nikonov

Moscow Institute of Physics and Technology; Nosov Magnitogorsk State Technical University; Lomonosov Moscow State University

Email: vomanturov@yandex.ru

Moscow Center for Fundamental and Applied Mathematics 

Rússia, Moscow; Magnitogorsk; Moscow

Bibliografia

  1. Мантуров В.О. Теория узлов, М.–Ижевск: Институт компьютерных исследований, 2005.
  2. Artin E. Theory of Braids // Ann. Math. 1947. V. 48. N 1. P. 101–126.
  3. Manturov V.O., Fedoseev D., Kim S., Nikonov I. Invariants And Pictures: Low-dimensional Topology And Combinatorial Group Theory. Series On Knots And Everything. V. 66. World Scientific, 2020.
  4. Manturov V.O., Nikonov I.M. On braids and groups Gkn // J. Knot Theory and Ramifications. 2015. V. 24. N 13. 1541009.
  5. Fortune S. Voronoi diagrams and Delaunay triangulations // Computing in Euclidean Geometry. Singapore: World Scientific Publishing Co, 1992. P. 193–233.
  6. Racah G. Theory of complex spectra II // Phys. Rev. 1942. V. 62. P. 438–462.
  7. Turaev, V.G., Viro O. Ya. State sum invariants of 3-manifolds and quantum 6j-symbols // Topology. 1992. V. 31. P. 865–902.
  8. Корепанов И.Г. SL(2)-решение уравнения пентагона и инварианты трехмерных многообразий // ТМФ. 2004. Т. 138. № 1. С. 23–34.
  9. Корепанов И.Г. Геометрия евклидовых тетраэдров и инварианты узлов // Фундамент. и прикл. матем. 2005. T. 11. № 4. С. 105–117.
  10. Manturov V.O., Fedoseev D., Kim S., Nikonov I. On groups Gkn and Гkn: A study of manifolds, dynamics, and invariants // Bull. Math. Soc. 2021. V. 11. N 2. 2150004.
  11. Penner R. The decorated Teichmuller space of punctured surfaces // Comm. Math. Phys. 1987. V. 113. N 2. 299–339.
  12. Kauffman L.H., Lins S. Temperley–Lieb Recoupling Theory and Invariants of 3-Manifolds. Princeton University Press, 1994.
  13. Тураев В.Г. Модули Конвея и Кауфмана полнотория // Зап. научн. сем. ЛОМИ. 1988. Т. 167. С. 79–89.
  14. Понарин Я.П. Элементарная геометрия. Т. 1. М.: МЦМНО, 2004.
  15. Birman J. Braids, Links, and Mapping Class Groups. Princeton University Press, 1974.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Flip.

Baixar (2KB)
3. Fig. 2. The five-term ratio.

Baixar (3KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024