Antifouling coatings for electrochemical sensors
- 作者: Pavlova N.V.1, Mardanov R.G.1, Bubelo O.N.1
-
隶属关系:
- All-Russian Institute of Scientific and Technical Information of the Russian Academy of Sciences
- 期: 卷 515, 编号 1 (2024)
- 页面: 3-17
- 栏目: CHEMISTRY
- URL: https://kazanmedjournal.ru/2686-9535/article/view/651910
- DOI: https://doi.org/10.31857/S2686953524020014
- EDN: https://elibrary.ru/zsfami
- ID: 651910
如何引用文章
详细
Electrochemical sensors are extremely promising for the analysis of a number of organic and inorganic compounds both in biological fluids and natural waters during environmental monitoring due to easing operation, ease of miniaturization, low cost, low limits of analyte determination and the possibility of modifying electrodes with a wide range of organic and inorganic compounds and nanomaterials. One of the main problems limiting the use of electrochemical sensors is electrode fouling. The main way to solve this problem is antifouling coatings. Depending on the application, various additional requirements are imposed on the antifouling coatings, such as, for example, biocompatibility or mechanical strength. In this review, various types of antifouling coatings for sensors are considered, the main areas of application of certain coatings are indicated. The main emphasis is placed on non-biocidal coatings, as the most promising ones.
全文:

作者简介
N. Pavlova
All-Russian Institute of Scientific and Technical Information of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: crx-pavlova@rambler.ru
俄罗斯联邦, 125315, Moscow
R. Mardanov
All-Russian Institute of Scientific and Technical Information of the Russian Academy of Sciences
Email: crx-pavlova@rambler.ru
俄罗斯联邦, 125315, Moscow
O. Bubelo
All-Russian Institute of Scientific and Technical Information of the Russian Academy of Sciences
Email: crx-pavlova@rambler.ru
俄罗斯联邦, 125315, Moscow
参考
- Будников Г.К., Майстренко В.Н., Вяселев М.Р. Основы современного электрохимического анализа. М.: Мир: Бином Л3, 2003. 592 с.
- Baranwal J., Barse B., Gatto G., Broncova G., Kumar A. // Chemosensors. 2022. V. 10. № 9. P. 363. https://doi.org/10.3390/chemosensors10090363
- Zhou L., Li X., Zhu B., Su B. // Electroanalysis. 2022. V. 34. № 6. P. 966–975. https://doi.org/10.1002/elan.202100406
- Figueroa-Miranda G., Wu C., Zhang Y., Nörbelet L., Lo Y., Tanner J.A., Elling L., Offenhäusser A., Mayer D. // Bioelectrochemistry. 2020. V. 136. 107589. https://doi.org/10.1016/j.bioelechem.2020.107589
- Lu H., He B., Gao B. // Eng. Regeneration. 2021. V. 2. P. 175–181. https://doi.org/10.1016/j.engreg.2021.12.002
- Han R., Wang G., Xu Z., Zhang L., Li Q., Han Y., Luo X. // Biosen. Bioelectron. 2020. V. 164. 112317. https://doi.org/10.1016/j.bios.2020.112317
- Caratelli V., Ciampaglia A., Guiducci J., Guiducci J., Sancesario G., Moscone D., Arduini F. // Biosens. Bioelectron. 2020. V. 165. 112411. https://doi.org/10.1016/j.bios.2020.112411
- Lakard S., Pavel I.-A., Lakard B. // Biosensors. 2021. V. 11. № 6. 179. https://doi.org/10.3390/bios11060179
- Puthongkham P., Venton B.J. // ACS Sensors. 2019. V. 4. № 9. P. 2403–2411. https://doi.org/10.1021/acssensors.9b00994
- Vadgama P. // Sensors. 2020. V. 20. № 11. 3149. https://doi.org/10.3390/s20113149
- Campuzano S., Pedrero M., Yáñez-Sedeño P., Pingarrón J.M. // Int. J. Mol. Sci. 2019. V. 20. № 2. 423. https://doi.org/10.3390/ijms20020423
- Qui H., Feng K., Gapeeva A., Meurisch K., Kaps S., Li X., Yu L., Mishra Y.K., Adelung R., Baum M. // Prog. Polym. Sci. 2022. V. 127. 101516. https://doi.org/10.1016/j.progpolymsci.2022.101516
- Bauer M., Duerkop A., Baeumner A.J. // Anal. Bioanal. Chem. 2023. V. 415. P. 83–95. https://doi.org/10.1007/s00216-022-04363-2
- Jin H., Tian L., Bing W., Zhao J., Ren L. // Prog. Mater. Sci., 2022, V. 124, 100889. https://doi.org/10.1016/j.pmatsci.2021.100889
- Piehler J., Brecht A., Valiokas R., Liedberg B., Gauglitz G. // Biosens. Bioelectron. 2000. V. 15. № 9–10. P. 473–481. https://doi.org/10.1021/acs.nanolett.0c03756
- M. Li, Jiang Sh., Simon J., Paßlick D., Frey M.-L., Wagner M., Mailänder V., Crespy D., Landfester K. // Nano Lett. 2021. V. 21. № 4. P. 1591–1598. https://doi.org/10.1021/acs.nanolett.0c03756
- Yang W., Zhou F. // Biosurface and Biotribology. 2017. V. 3. № 3. P. 97–114. https://doi.org/10.1016/j.bsbt.2017.10.001
- Choi Y., Tran H.-V., Lee T.R. // Coatings. 2022. V. 12. № 10. 1462. https://doi.org/10.3390/coatings12101462
- Jiménez-Pardo I., Van der Ven L.G.J., Van Benthem R.A.T.M., De With G., Esteves A.C.C. // Coatings. 2018. V. 8. № 5. 184. https://doi.org/10.3390/coatings8050184
- Wu J.-G., Chen J.-H., Liu K.-T., Luo S.-C. // Appl. Mater. Interfaces. 2019. V. 11. № 24. P. 21294–21307. https://doi.org/10.1021/acsami.9b04924
- Delgado A., Briciu-Burghina C., Regan F. // Sensors, 2021. V. 21. № 2. 389. https://doi.org/10.3390/s21020389
- Nien P.-C., Tung T.-S., Ho K.-C. // Electroanalysis. 2006. V. 18. № 13–14. P. 1408–1415. https://doi.org/10.1002/elan.200603552
- Gao N., Yu J., Tian Q., Shi J., Zhang M., Chen Sh., Zang L. // Chemosensors. 2021. V. 9. № 4. 79. https://doi.org/10.3390/chemosensors9040079
- Hsu C.-C., Liu T.-Y., Peng X.-Y., Cheng Y.-W., Lin Y.-R., Yang M.-C., Huang L.-Y., Liu K.-H., Yung M.-C. // Surf. Coat. Technol. 2020. V. 397. № 15. 125963. https://doi.org/10.1016/j.surfcoat.2020.125963
- Benoudjit A., Bader M.M., Salim W.W.A.W. // Sens. Bio-Sens. Res. 2018. V. 17. P. 18–24. https://doi.org/10.1016/j.sbsr.2018.01.001
- Yang X., Chen P., Zhang Xi, Zhou H., Song Z., Yang W., Luo X. // Anal. Chim. Acta. 2023. V. 1252. 341075. https://doi.org/10.1016/j.aca.2023.341075
- Singha P., Locklin J., Handa H. // Acta Biomater. 2017. V. 50. P. 20–40. https://doi.org/10.1016/j.actbio.2016.11.070
- Lin C.-H., Luo S.-C. // Langmuir. 2022. V. 38. № 24. P. 7383–7399. https://doi.org/10.1021/acs.langmuir.2c00448
- Chen X., Noy A. // APL Mater. 2021. V. 9. № 2. 020701. https://doi.org/10.1063/5.0029994
- Chen S., Li L., Zheng J. // Polymer. 2010. V. 51. V. 23. P. 5283–5293. https://doi.org/10.1016/j.polymer.2010.08.022
- Regev C., Jiang Z., Kasher R., Miller Y. // Molecules, 2022. V. 27. № 21. 7394. https://doi.org/10.3390/molecules27217394
- Jayakumar K., Lielpetere A. Domingo-Lopez D.A., Levey R.E., Duffy G.P., Schuhmann W., Leech D. // Biosens. Bioelectron. 2023. V. 219. 114815. https://doi.org/10.1016/j.bios.2022.114815
- Klukova L., Bertok T., Petrikova M., Sediva A., Mislovicova D., Katrlik J., Vikartovska A., Filip J., Kasak P., Andicsová-Eckstein A., Mosnáček J., Lukáč J., Rovenský J., Imrich R., Tkac J. // Anal. Chim. Acta. 2015. V. 853. P. 555–562. https://doi.org/10.1016/j.aca.2014.10.029
- Bertok T., Klukova L., Sediva A., Kasák P., Semak V., Micusik M., Omastova M., Chovanová L., Vlček M., Imrich R., Vikartovska A., Tkac J. // Anal. Chem. 2013. V. 85. № 15. P. 7324–7332. https://doi.org/10.1021/ac401281t
- Bertok T., Dosekova E., Belicky S., Holazova A., Lorencova L., Mislovicova D., Paprckova D., Vikartovska A., Plicka R., Krejci J., Ilcikova M., Kasak P., Tkac J. // Langmuir. 2016. V. 32. № 28. P. 7070–7078. https://doi.org/10.1021/acs.langmuir.6b01456
- Tan D., Li F., Zhou B. Int. J. // Electrochem. Sci. 2020. V. 15. № 9. P. 9446–9458. https://doi.org/10.20964/2020.09.56
- Li Y., Zhao S., Xu Z., Qiao X., Li M., Li Y., Luo X. // Biosens. Bioelectron. 2023. V. 225. 115101. https://doi.org/10.1016/j.bios.2023.115101
- Chungprempree J., Preechawong J., Nithitanakul M. // Polymers. 2022. V. 14. № 20. 4252. https://doi.org/10.3390/polym14204252
- Janczarek M., Hupka J., Kisch H. // Physicochem. Probl. Miner. Process. 2006. V. 40. P. 287–292.
- Chen Y., Liu B., Chen Z., Zuo X. // Anal. Chem. 2021. V. 93. № 30. P. 10635–10643. https://doi.org/10.1021/acs.analchem.1c01973
- Patel J., Zhao B., Uppalapati B., Daniels R.C., Ward K.R., Collinson M.M. // Anal. Chem. 2013. V. 85. № 23. P. 11610–11618. https://doi.org/10.1021/ac403013r
- Matharu Z., Daggumati P., Wang L., Dorofeeva T.S., Li Z., Seker E. // ACS Appl. Mater. Interfaces. 2017. V. 9. № 15. P. 12959–12966. https://doi.org/10.1021/acsami.6b15212
- Summerlot D., Kumar A., Das S., Goldstein L., Seal S., Diaz D., Cho H.J. // Procedia Engineering. 2011. V. 25. P. 1457–1460. https://doi.org/10.1016/j.proeng.2011.12.360
- Chu Y., Zhou H., Wang X., Zhang H., Zhao L., Xu T., Yan H., Zhao F. // Microchem. J. 2023. V. 186. 108259. https://doi.org/10.1016/j.microc.2022.108259
- Guo J., Liu X., Wang A., Yu X., Ding L. // Microchem. J. 2022. V. 183. 107964. https://doi.org/10.1016/j.microc.2022.107964
- Goux A., Etienne M., Aubert E., Lecomte C., Ghanbaja J., Walcariusn A. // Chem. Mater. 2009. V. 21. № 4. P. 731–741. https://doi.org/10.1021/cm8029664
- Walcariu A., Sibottier E., Etienne M., Ghanbaja J. // Nat. Mater. 2007. V. 6. № 8. P. 602–608. https://doi.org/10.1038/nmat1951
- Huang J., Zhang T., Dong G., Zhu S., Yan F., Liu J. // Front. Chem. 2022. V. 10. 900282. https://doi.org/10.3389%2Ffchem.2022.900282
- Huang J., Zhang T., Dong G., Zhu S., Yan F., Liu J. // Front. Chem., Sec. Analytical Chemistry. –2022. – Volume 10, 900282. https://doi.org/10.3389%2Ffchem.2022.900282
- Verger L., Xu C., Natu V., Cheng H.-M., Ren W., Barsoum M.W. // Curr. Opin. Solid State Mater. Sci. 2019. V. 23. № 3. P. 149–163.
- Babar Z.U.D., Ventura B.D., Velotta R., Iannotti V. // RSC Adv. 2022. V. 12. P. 19590–19610. https://doi.org/10.1039/D2RA02985E
- Сметкин А.В., Майорова Ю.К. Вестник ПНИПУ. Машиностроение, материаловедение. 2015. Т. 17. № 4. С. 120–138. https://doi.org/10.15593/2224–9877/2015.4.09
- Singh C., Höfs S., Konthur Z., Hodoroaba V.-D., Radnik J., Schenk J.A., Schneider R.J. // ACS Appl. Eng. Mater. 2023. V. 1. P. 495–507. https://doi.org/10.1021/acsaenm.2c00118
- Lorencova L., Sadasivuni K.K., Kasak P., Tkac J. Ti3C2 MXene-Based Nanobiosensors for Detection of Cancer Biomarkers. In: Novel Nanomaterials. Krishnamoorthy K. (ed.). IntechOpen, 2021. https://doi.org/10.5772/intechopen.94309
- Yu R., Xue J., Wang Y., Qiu J., Huang X., Chen A., Xue J.J. // Nanobiotechnol. 2022. V. 20. 119. https://doi.org/10.1186%2Fs12951-022-01317-9
- Krishnamoorthy R., Muthumalai K., Nagaraja T., Rajendrakumar R.T., Das S.R. // ACS Omega. 2022. V. 10. V. 7. № 46. P. 42644–42654. https://doi.org/10.1021/acsomega.2c06505
- Wu L., Lu X., Dhanjai, Wu Z.-S., Dong Y., Wan X., Zheng S., Chene J. // Biosens. Bioelectron. 2018. V. 107. P. 69–75. https://doi.org/10.1016/j.bios.2018.02.021
- Rhouati A., Berkani M., Vasseghian Y., Golzadeh N. // Chemosphere. 2022. V. 291. 132921. https://doi.org/10.1016/j.chemosphere.2021.132921
- Cheng H., Yang J. // Int. J. Electrochem. Sci. 2020. V. 15. V. 3. P. 2295–2306. https://doi.org/10.20964/2020.03.24
- Yang M., Wang L., Lu H., Dong Q. // Micromachines, 2023. V. 14. № 5. 1088. https://doi.org/10.3390/mi14051088
- Mehmandoust M., Li. G., Erk N. // Ind. Eng. Chem. Res. 2023. V. 62. V. 11. P. 4628–4635. https://doi.org/10.1021/acs.iecr.2c03058
- Kanoun O., Lazarević-Pašti T., Pašti I., Nasraoui S., Talbi M., Brahem A., Adiraju A., Sheremet E., Rodriguez R.D., Ali M.B., Al-Hamry A. // Sensors. 2021. V. 21. № 12. 4131. https://doi.org/10.3390/s21124131
- Peltola E., Sainio S., Holt K.B., Palomäki T., Koskinen J., Laurila T. // Anal. Chem. 2018. V. 90. № 2. P. 1408–1416. http://dx.doi.org/10.1021/acs.analchem.7b04793
- Medyantseva E.P., Gazizullina E.R., Brusnitsyn D.V., Ziganshin M.A., Mustafina A.R., Elistratova J.G., Brylev K.A., Budnikov H.C. // Anal. Lett. 2022. V. 55. № 11. P. 1757–1770. https://doi.org/10.1080/00032719.2021.2025384
- Zahran M., Khalifa Z., Zahrana M.A.-H., Azzema M.A. // Mater. Adv. 2021. V. 2. P. 7350–7365. https://doi.org/10.1039/D1MA00769F
- Ren J., Han P., Wei H., Jia L. // ACS Appl. Mater. Interfaces. 2014. V. 6. № 6. P. 3829–3838. https://doi.org/10.1021/am500292y
- Ensafi A.A., Zandi-Atashbar N., Rezaei B., Ghiaci M., Chermahinia M.E., Moshiri P. // RSC Adv. 2016. V. 6. P. 60926–60932. https://doi.org/10.1039/C6RA10698F
- Lotfi Z., Gholivand M.B., Shamsipur M., Mahin mirzaei // J. Alloys Compd. 2022. V. 903. 163912. https://doi.org/10.1016/j.jallcom.2022.163912
- Bek F., Loessl M., Baeumner A.J. // Microchim. Acta. 2023. V. 190. 91. https://doi.org/10.1007/s00604–023–05666–6
- Yu T., Glennon L., Fenelon O., Breslin C.B. // Talanta. 2023. V. 251. 123758. https://doi.org/10.1016/j.talanta.2022.123758
补充文件
