Luminescence of lanthanide complexes in nano anion exchangers

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The possibility of using nanoanion exchangers as an organized medium for enhancing the luminescence of rare earth element complexes has been demonstrated for the first time. When a sol formed by anion exchanger nanoparticles is introduced into a solution containing thenoyltrifluoroacetone (TTA) and traces of europium(III) or samarium(III) salts, TTA anions concentrate in the ionite phase and bind rare earth cations into negatively charged complexes, which is accompanied by an increase in luminescence intensity by three orders of magnitude.

Full Text

Restricted Access

About the authors

M. V. Koroleva

V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: olenin@geokhi.ru
Russian Federation, 119991, Moscow

V. V. Yagov

V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: olenin@geokhi.ru
Russian Federation, 119991, Moscow

A. Yu. Olenin

V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: olenin@geokhi.ru
Russian Federation, 119991, Moscow

A. M. Dolgonosov

V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: olenin@geokhi.ru
Russian Federation, 119991, Moscow

R. Kh. Khamizov

V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: olenin@geokhi.ru
Russian Federation, 119991, Moscow

References

  1. Полуэктов Н.С., Кононенко Л.И., Ефрюшина Н.П., Бельтюкова С.В. Спектрофотометрические и люминесцентные методы определения лантаноидов. Пилипенко А.Т. (ред.). Киев: Наукова думка, 1989. 256 с.
  2. Проблемы аналитической химии. Т. 20. Нанообъекты и нанотехнологии в химическом анализе. Штыков С.Н. (ред.). М.: Наука. 2015. 430 с.
  3. Долгоносов А.М., Хамизов Р.Х., Колотилина Н.К., Шайхина С.У., Евстигнеева П.В. // Сорб. хром. проц. 2016. Т. 16. № 4. С. 400–414.
  4. Долгоносов А.М., Хамизов Р.Х., Колотилина Н.К. // Журн. аналит. хим. 2019. Т. 74. № 4. С. 285–296. http s://doi.org/10.1134/S0044450219030034
  5. Nehra K., Dalal A., Hooda A., Bhagwan S., Saini R.K., Mari B., Kumar S., Singh D. // J. Mol. Struct. 2022. V. 1249. Art. 131531. http s://doi.org/10.1016/j.molstruc.2021.131531
  6. Blois L., Carneiro N.A., Longo R.L., Costa I.F., Paolini T.B., Brito H.F., Malta O.L. // Опт. спектроск. 2022. Т. 130. № 1. С. 207–214. http s://doi.org/10.21883/OS.2022.01.51909.35-21
  7. Atanassova M. // Separations. 2022. V. 9. № 6. Art. 154. http s://doi.org/10.3390/separations906015

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1. Reaction of the OH form of NIA with an aqueous solution of TTA.

Download (50KB)
3. Fig. 1. Excitation (curve 1, λlum = 613 nm) and luminescence (curve 2, λexc = 360 nm) spectra of aqueous solutions containing 40 μM Eu(III) and 400 μM TTA in the absence of NIA (a) and in the presence of 50 μM NIA (b).

Download (121KB)
4. Scheme 2. Equilibrium of the complexation reaction in the NIA–TTA–Eu3+ system.

Download (143KB)
5. Fig. 2. Excitation (curve 1, λlum = 647 nm) and luminescence (curve 2, λexc = 380 nm) spectra of aqueous solutions containing 50 μM Sm(III) and 2 mM TTA in the presence of 250 μM NIA.

Download (83KB)
6. Fig. 3. Dependence of luminescence intensity on the concentration of Eu(III) and Sm(III). Conditions for Eu(III): λexc = 360 nm, λlum = 613 nm, 0.4 mM TTA and 50 μM NIA; for Sm(III): λexc = 380 nm, λlum = 647 nm, 2 mM TTA and 250 μM NIA.

Download (69KB)

Copyright (c) 2024 Russian Academy of Sciences