Detection of Chemically Hazardous Substances by Ion Mobility Spectrometry
- Authors: Aleksandrova D.А.1, Baberkina E.P.1, Yakushin R.V.1, Osinova Е.S.1, Melamed Т.B.1, Luzenina L.A.1, Tsaplin G.V.1, Tsaplin G.V.1, Belyakov V.V.2, Shaltayeva Y.R.2, Golovin A.V.3
-
Affiliations:
- D. Mendeleev University of Chemical Technology of Russia
- National Research Nuclear University MEPhI
- The Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
- Issue: Vol 517, No 1 (2024)
- Pages: 39-48
- Section: PHYSICAL CHEMISTRY
- URL: https://kazanmedjournal.ru/2686-9535/article/view/651902
- DOI: https://doi.org/10.31857/S2686953524040052
- EDN: https://elibrary.ru/YDTJWA
- ID: 651902
Cite item
Abstract
A comparison of chemical detectors based on ion mobility spectrometry used by rapid response services for the rapid detection and identification of a wide range of chemically hazardous substances has been carried out. The physical foundations of the registration method, the method of mathematical processing of spectra and determination of the ionic mobility of substances are presented. A procedure for the preparation of test samples of vapors of volatile organic compounds in a wide range of concentrations has been developed. To identify the compounds, domestic devices were used – the Kerber-T ion drift detector and the Segment stationary automatic gas detector. Their comparison in sensitivity and detection range in the identification of compounds was carried out. The research was conducted on a set of substances standardized to ensure safety in terrorist attacks. As a result of the work, ion mobility spectra for bromocyanum, carbon disulfide, and chloroacetone were obtained. The values of ionic mobility were determined, the dependences of the spectra of these compounds on the concentration in the air were investigated, as well as the limits of detection of substances. Possible mechanisms for the formation of the observed ion mobility spectra are proposed in accordance with the ionization characteristics of bromocyanate, carbon disulfide, and chloroacetone. Schemes of possible formation of monomeric and dimeric ions of compounds are shown. The generalized results of experimental studies, the peculiarities of the identification of compounds, taking into account the type of spectra, concentrations of substances and measurement conditions, are obtained.
About the authors
D. А. Aleksandrova
D. Mendeleev University of Chemical Technology of Russia
Email: kittenlid@mail.ru
Russian Federation, 125047 Moscow
E. P. Baberkina
D. Mendeleev University of Chemical Technology of Russia
Email: kittenlid@mail.ru
Russian Federation, 125047 Moscow
R. V. Yakushin
D. Mendeleev University of Chemical Technology of Russia
Email: kittenlid@mail.ru
Russian Federation, 125047 Moscow
Е. S. Osinova
D. Mendeleev University of Chemical Technology of Russia
Email: kittenlid@mail.ru
Russian Federation, 125047 Moscow
Т. B. Melamed
D. Mendeleev University of Chemical Technology of Russia
Email: kittenlid@mail.ru
Russian Federation, 125047 Moscow
L. A. Luzenina
D. Mendeleev University of Chemical Technology of Russia
Author for correspondence.
Email: kittenlid@mail.ru
Russian Federation, 125047 Moscow
G. V. Tsaplin
D. Mendeleev University of Chemical Technology of Russia
Email: kittenlid@mail.ru
Russian Federation, 125047 Moscow
G. V. Tsaplin
D. Mendeleev University of Chemical Technology of Russia
Email: kittenlid@mail.ru
Russian Federation, 125047 Moscow
V. V. Belyakov
National Research Nuclear University MEPhI
Email: kittenlid@mail.ru
Russian Federation, 115409 Moscow
Yu. R. Shaltayeva
National Research Nuclear University MEPhI
Email: kittenlid@mail.ru
Russian Federation, 115409 Moscow
A. V. Golovin
The Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
Email: kittenlid@mail.ru
Russian Federation, 119071 Moscow
References
- Смолин Ю.М., Кобцев Б.Н., Новоселов Н.П. // Вестник ТГТУ. 2009. Т. 15. № 3. С. 620–628.
- Hernandez-Mesa M., Ropartz D., Garcia-Campana A.M., Rogniaux H., Dervilly-Pinel G., Le Bizec B. // Molecules. 2019. V. 30. № 11. P. 2185–2195. https://doi.org/10.3390/molecules24152706
- Tabrizchi M., Maki Abadi E., Parchami R., Fadaei E. // J.Am. Soc. Mass Spectrom. 2022. V. 33. № 7. P. 1148–1160. https://doi.org/10.1021/jasms.2c00010
- Li J., Li L., Gao W., Shi Sh., Yu J., Tang K. // Anal. Chem. 2022. V. 94. № 16. P. 6363–6370. https://doi.org/10.1021/acs.analchem.2c00805
- Жалкиев В.Т., Енин В.Г. // Общество и право. 2006. № 2 (12). С. 141–145.
- Krylova N., Krylov E., Eiceman G.A., Stone J.A. // J. Phys. Chem. 2003. V. 107. № 19. P. 3648–3654. http://dx.doi.org/10.1021/jp0221136
- Лобачева Г.К., Кайргалиев Д.В. // Вестник ВолГУ. Сер. 10. 2015. № 47. С. 59–68. http://dx.doi.org/10.15688/jvolsu10.2015.4.9
- Kanu A.B., Hill H.H. Jr., Gribb M.M., Walters R.N. // J. Environ. Monit. 2007. V. 9. № 1. P. 51–60. https://doi.org/10.1039/b610493b
- Пушкин И.А., Валуев Н.П. // Научные и образовательные проблемы гражданской защиты. 2010. № 4. С. 53–57.
- Eiceman G.A., Karpas Z., Hill H.H. Jr. Ion Mobility Spectrometry, 3nd ed. Raton B. (Ed.). Taylor & Francis: Boca Raton, FL, USA, 2013, p. 444.
- Буряков И.А. // Журн. аналит. химии. 2011. Т. 66. № 8. С. 788–809. https://doi.org/10.1134/S1061934811080077
- The portable ion mobility spectrometry (IMS). Chemical agent detectors. Market survey report. National Urban Security Technology Laboratory for the U.S. Department of Homeland Security, Science and Technology Directorate. Washington, DC, 2013. 20 p.
- Травень В.Ф., Щекотихин А.Е. Практикум по органической химии: учебное пособие. М.: БИНОМ. Лаборатория знаний, 2014. С. 210.
- Allers M., Schaefer Ch., Ahrens A., Schlottmann F., Hitzemann M., Kobelt T., Zimmermann S., Hetzer R. // Anal. Chem. 2022. V. 94. P. 1211−1220. https://doi.org/10.1021/acs.analchem.1c04397
- Семиохин И.А. Физическая химия. М.: МГУ, 2001. 272 с.
- Александрова Д.А., Меламед Т.Б., Баберкина Е.П., Фенин А.А., Осинова Е.С., Коваленко А.Е., Якушин Р.В., Шалтаева Ю.Р., Беляков В.В., Зыкова Д.И. // Тонкие химические технологии. 2021. Т. 16. № 6. С. 512–525. https://doi.org/10.32362/2410-6593-2021-16-6-512-525
- Франке З. Химия отравляющих веществ. Пер. с нем. М.: Химия. 1973. 437 с.
- Гармаш А.В., Сорокина Н.М. Метрологические основы аналитической химии: учеб. пособие по курсу “Аналитическая химия”. Шеховцова Т.Н. (ред.). М.: МГУ, 2017. 52 с.
- Организация медико-санитарного обеспечения при террористических актах с использованием опасных химических и отравляющих веществ: Методические рекомендации МР № 2510/13132-01-34: утв. М-во здравоохранения РФ, Гл. сан. врачом 27.10.2001 г. / Всероссийский центр медицины катастроф “Защита” Федерального медико-биологического агентства, Министерство здравоохранения Российской Федерации. М.: ВЦМК “Защита”. 2003. 35 с.
Supplementary files
