Criterion for the laminar-turbulent transition onset in a compressible boundary layer
- Authors: Egorov I.V.1,2, Fedorov A.V.2
-
Affiliations:
- The Central Aerohydrodynamic Institute named after Proffesor N.E. Zhukovsky
- Moscow Institute of Physics and Technology (National Research University)
- Issue: Vol 522, No 1 (2025)
- Pages: 45–50
- Section: МЕХАНИКА
- URL: https://kazanmedjournal.ru/2686-7400/article/view/689519
- DOI: https://doi.org/10.31857/S2686740025030077
- EDN: https://elibrary.ru/PVXMVG
- ID: 689519
Cite item
Abstract
A criterion of the laminar-turbulent transition onset in a compressible boundary-layer flow is formulated on the base of Liepmann’ assumption according to which the critical condition is reached where the Reynolds stress (caused by the laminar oscillations) becomes equal to the shear stress of the base (undisturbed) flow. Comparison with known results of direct numerical simulations of disturbances propagating in the non-gradient boundary layers on flat plates and sharp cones at zero angle of attack showed that the criterion works well in a wide range of local Mach numbers (0 < Me < 7) for different mechanisms of the nonlinear breakdown of unstable waves.
Full Text

About the authors
I. V. Egorov
The Central Aerohydrodynamic Institute named after Proffesor N.E. Zhukovsky; Moscow Institute of Physics and Technology (National Research University)
Author for correspondence.
Email: ivan.egorov@tsagi.ru
Corresponding Member of the RAS
Russian Federation, Zhukovsky, Moscow Region; Dolgoprudny, Moscow RegionA. V. Fedorov
Moscow Institute of Physics and Technology (National Research University)
Email: ivan.egorov@tsagi.ru
Russian Federation, Dolgoprudny, Moscow Region
References
- Morkovin M.V., Reshotko E., Herbert T. Transition in open flow systems: a reassessment // Bull. APS. 1994. V. 39. № 9. P. 1–31.
- Гапонов С.А., Маслов А.А. Развитие возмущений в сжимаемых потоках. Новосибирск: Наука, 1980. 143 c.
- Saric W.S., Reshotko E., Arnal D. Hypersonic laminar-Turbulent Transition // AGARD Advisory Report 319. Hypersonic Experimental and Computational Capability, Improvement and Validation. 1998. V. 2. P. 2-1–2-27.
- Fedorov A. Transition and Stability of High-Speed Boundary Layers // Annu. Rev. Fluid Mech. 2011. V. 43. P. 79–95.
- Hypersonic Boundary-Layer Transition Prediction // STO Technical Report TR-AVT-240. Aug. 2020.
- Cheng C., Chen X., Zhu W., Shyy W., Fu L. Progress in physical modeling of compressible wall-bounded turbulent flows // Acta Mech. Sin. 2024. V. 40. 323663.
- Zhong X., Wang X. Direct Numerical Simulation on the Receptivity, Instability, and Transition of Hypersonic Boundary Layers // Annu. Rev. Fluid Mech. 2012. V. 44. P. 527–561.
- Hefner J.N., Bushnell D.M. Application of Stability Theory to Laminar Flow Control // AIAA paper 79–1493. Jul. 1979. https://doi.org/10.2514/6.1979-1493
- Malik M.R. Boundary-layer transition prediction toolkit // AIAA paper 1997–1904. Jul. 1997. https://doi.org/10.2514/6.1997-1904
- Crouch J.D. Boundary-Layer Transition Prediction for Laminar Flow Control // AIAA paper 2015–2472. June 2015. https://doi.org/10.2514/6.2015-2472
- Mack L.M. Transition and laminar instability / NASA-CP-153203, Jet Propulsion Lab. Pasadena, Calif. May 15, 1977.
- Fedorov A.V. Applications of the Mack amplitude method to transition predictions in high-speed flows // NATO RTO-MP-AVT-200. 2012. P. 6-1–6-30.https://doi.org/10.14339/RTO-MP-AVT-200
- Fedorov A.V. Prediction and control of laminar-turbulent transition in high-speed boundary layer flows // Procedia IUTAM. 2015. V. 14. P. 3–14.
- Marineau E.C. Prediction Methodology for Second-Mode-Dominated Boundary-Layer Transition in Wind Tunnels // AIAA J. 2017. V. 55. № 2. P. 484–499.
- Marineau E.C., Grossir G., Wagner A., Leinemann M., Radespiel R., Tanno H., Chynoweth B.C., Schneider S.P., Wagnild R.M., Casper K.M. Analysis of Second-Mode Amplitudes on Sharp Cones in Hypersonic Wind Tunnels // J. Spacecr. Rockets. 2019. V. 56. № 2. P. 307–318. https://doi.org/10.2514/1.A34286
- Ustinov M.V. Progress in Development of Amplitude Method of Transition Prediction on Swept Wing // IUTAM Laminar Turbulent Transition. 9th IUTAM Symposium. London, UK. Sept 2–6. 2019. P. 71–83.
- Fedorov A.V., Kozlov M.V. Receptivity of High-Speed Boundary Layer to Solid Particulates // AIAA Paper 2011–3925. June 2011. https://doi.org/10.2514/6.2011-3925
- Borodulin V.I., Ivanov A.V., Kachanov Y.S., Crouch J.D., Ng L.L. Criteria of swept-wing boundary-layer transition and variable N-factor methods of transition prediction // International Conference on Methods of Aerophysical Research. June 30–July 6, 2014. Proc. / Ed. V.M. Fomin. Novosibirsk: Inst. Theor & Appl. Mech, 2014. Paper № 12. 10 p.
- Malik M.R., Li F., Choudhari M.M., Chang C.-L. Secondary instability of crossflow vortices and swept-wing boundary-layer transition // J. Fluid Mech. 1999. V. 399. P. 85–115.
- Liepmann H.W. Investigation of boundary layer transition on concave walls stability and transition on curved boundaries // NACA Wartime Report 4J28. Feb. 1945.
- Rist U., Fasel H. Direct numerical simulation of controlled transition in a flat-plate boundary layer // J. Fluid Mech. 1995. V. 298. P. 211–248.
- Zang T.A., Chang C.-L., Ng L.L. The transition prediction toolkit: LST, SIT, PSE, DNS, and LES // The Fifth Symposium on Numerical and Physical Aspects of Aerodynamic Flows. California State Univ. Jan. 1. 1992.
- Mayer C., von Terzi D., Fasel H. DNS of Complete Transition to Turbulence via Oblique Breakdown at Mach 3 // AIAA Paper 2008–4398. June 2008. https://doi.org/10.2514/6.2008-4398
- Sivasubramanian J., Fasel H. Direct Numerical Simulation of Controlled Transition In a Boundary Layer on a Sharp Cone at Mach 6 // AIAA Paper 2013–0263. Jan. 2013. https://doi.org/10.2514/6.2013-263
- Koevary C., Laible A., Mayer C., Fasel H. Numerical Simulations of Controlled Transition for a Circular Cone at Mach 8 // AIAA Paper 2010–4598. July 2010. https://doi.org/10.2514/6.2010-4598
- Fedorov A., Tumin A. The Mack’s amplitude method revisited // AIAA Paper 2021–0851. Jan. 2021. https://doi.org/10.2514/6.2021-0851
Supplementary files
