Depletion of nonlinearity for space-analytic space-periodic solutions to equations of the hydrodynamic type

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

We consider solenoidal space-periodic space-analytic solutions to the equations of hydrodynamics. An elementary bound shows that due to the special structure of the nonlinear terms in the equations for modified solutions, effectively they lack a half of the spatial gradient. This appears to be a novel mechanism for depletion of nonlinearity. We present a two-phase iterative procedure yielding an expanded bound for the guaranteed time of the space analyticity of the hydrodynamic solutions. Each iteration involves two phases: In phase 1, the enstrophy of the modified solution and the bound for the radius of the analyticity of the original solution simultaneously increase (the bound is proportional to the elapsed time since the beginning of phase 1). In phase 2, the enstrophy and bound simultaneously decrease. It is straightforward to generalise this construction for the equations of magnetohydrodynamics.

About the authors

V. A. Zheligovsky

Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences

Author for correspondence.
Email: vlad@mitp.ru
Russian Federation, Moscow

References

  1. Фриш У. Турбулентность. Наследие А. Н. Колмогорова. М.: Фазис, 1998. 343 с.
  2. Matthaeus W.H., Pouquet A., Mininni P.D., Dmitruk P., Breech B. Rapid alignment of velocity and magnetic field in magnetohydrodynamic turbulence // Phys. Rev. Lett. 2008. V. 100. 085003. https://doi.org/10.1103/PhysRevLett.100.085003
  3. Dorch S.B.F., Archontis V. On the saturation of astrophysical dynamos: Numerical experiments with the no-cosines flow // Solar Phys. 2004. V. 224. P. 171–178. https://doi.org/10.1007/s11207-005-5700-4
  4. Donzis D.A., Gibbon J.D., Gupta A., Kerr R.M., Pandit R., Vincenzi D. Vorticity moments in four numerical simulations of the 3D Navier-Stokes equations // J. Fluid Mech. 2013. V. 732. P. 316–331. https://doi.org/10.1017/jfm.2013.409
  5. Gibbon J.D., Donzis D.A., Gupta A., Kerr R.M., Pandit R., Vincenzi D. Regimes of nonlinear depletion and regularity in the 3D Navier-Stokes equations // Nonlinearity. 2014. V. 27. P. 2605–2625. https://doi.org/10.1088/0951-7715/27/10/2605
  6. Gibbon J.D. Modal dependency and nonlinear depletion in the three-dimensional Navier-Stokes equations // Recent progress in the theory of the Euler and Navier-Stokes equations // Eds. Robinson J. C., Rodrigo J. L., Sadowski W., Vidal-López A. Cambridge: Cambridge University Press, 2016. P. 57–76. (London Mathematical Society Lecture Note Series. V. 430). https://doi.org/10.1017/cbo9781316407103.005
  7. Gibbon J.D., Gupta A., Krstulovic G., Pandit R., Politano H., Ponty Y., Pouquet A., Sahoo G., Stawarz J. Depletion of nonlinearity in magnetohydrodynamic turbulence: Insights from analysis and simulations // Phys. Rev. E. 2016. V. 93. 043104. https://doi.org/10.1103/PhysRevE.93.043104
  8. Jeyabalan S.R., Chertovskih R., Gama S., Zheligovsky V. Nonlinear large-scale perturbations of steady thermal convective dynamo regimes in a plane layer of electrically conducting fluid rotating about the vertical axis // Mathematics. 2022. V. 10. 2957. https://doi.org/10.3390/math10162957
  9. Foias C., Temam R. Gevrey class regularity for the solutions of the Navier-Stokes equations // J. Funct. Anal. 1989. V. 87. P. 359–369. https://doi.org/10.1016/0022-1236(89)90015-3
  10. Bradshaw Z., Grujić Z., Kukavica I. Analyticity radii and the Navier-Stokes equations: recent results and applications // Recent progress in the theory of the Euler and Navier-Stokes equations Eds. Robinson J.C., Rodrigo J. L., Sadowski W., Vidal-López A. Cambridge University Press. 2016. P. 22–36. (London Mathematical Society Lecture Note Series. V. 430). https://doi.org/10.1017/CBO9781316407103.003
  11. Zheligovsky V. Space analyticity and bounds for derivatives of solutions to the evolutionary equations of diffusive magnetohydrodynamics // Mathematics. 2021. V. 9. 1789. https://doi.org/10.3390/math9151789
  12. Levermore C.D., Oliver M. Analyticity of solutions for a generalized Euler equation // J. Diff. Equations. 1997. V. 133. P. 321–339. https://doi.org/10.1006/jdeq.1996.3200
  13. Zheligovsky V. A priori bounds for Gevrey-Sobolev norms of space-periodic three-dimensional solutions to equations of hydrodynamic type // Adv. Diff. Equations. 2011. V. 16. P. 955–976. https://doi.org/10.57262/ade/1355703183
  14. Foias C., Guillopé C., Temam R. New a priori estimates for Navier-Stokes equations in dimension 3 // Comm. Partial Diff. Equations. 1981. V. 6. P. 329–359. https://doi.org/10.1080/03605308108820180
  15. Biswas A., Foias C. On the maximal space analyticity radius for the 3D Navier-Stokes equations and energy cascades // Annali di Matematica Pura ed Applicata. 2014. V. 193. P. 739–777. https://doi.org/10.1007/s10231-012-0300-z

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences