Restoration of the properties of organomineral gels in dried soil samples
- 作者: Fedotov G.N.1, Shoba S.A.1, Ushkova D.A.1, Gorepekin I.V.1, Salimgareeva O.A.1, Sukharev A.I.1
-
隶属关系:
- Lomonosov Moscow State University
- 期: 卷 517, 编号 1 (2024)
- 页面: 179-188
- 栏目: SOIL SCIENCE
- ##submission.dateSubmitted##: 31.01.2025
- ##submission.datePublished##: 13.12.2024
- URL: https://kazanmedjournal.ru/2686-7397/article/view/650014
- DOI: https://doi.org/10.31857/S2686739724070198
- ID: 650014
如何引用文章
详细
It was previously established that soil drying changes their properties and, in particular, the characteristics of a specific soil organic substance – humic substances (HS). HS is the basis of soil organomineral gels that cover and bind soil particles. When water is removed from the soil, hydrophobization and compression of gels occur, as a result of which the properties of soil samples may change. The restoration of soil gels of air-dry samples should reduce the discrepancy between the data obtained when studying the soil properties of dried and non-dried soil samples. The purpose of the work is to find ways to restore the structure of soil gels. Samples of 6 types of soils were studied. Methods of vibration viscometry, laser diffractometry, scanning electron microscopy (SEM), photocolorimetry and conductometry were used in the work. It has been found that drying of soil samples increases the size of supramolecular formations (SMFs) from the soil and reduces the viscosity of soil pastes, a parameter characterizing the structure and ability of gels to swell. To restore the structure of soil gels, it is proposed to reduce the size of the SMFs from the HS to the initial ones. SMFs separation of air-dry samples was carried out by moistening the soils and subsequent treatment with various influences: temperature, ultrasound and freezing. Using SEM, it is shown that heating and ultrasound treatment do not reduce, but increase the size of the SMFs. Humidification of air-dry soils, exposure to moisture for 2 weeks and subsequent freezing bring the viscosity of pastes of a number of studied soils closer to the condition of samples that have not been dried. This process occurs due to the return of the SMFs size to the values of the initial soils, as evidenced by the data on the distribution of the size of suspended particles on a laser diffractometer. Thus, a method for restoring gel structures in dried soils to the state of the original soils is proposed.
全文:

作者简介
G. Fedotov
Lomonosov Moscow State University
编辑信件的主要联系方式.
Email: gennadiy.fedotov@gmail.com
俄罗斯联邦, Moscow
S. Shoba
Lomonosov Moscow State University
Email: gennadiy.fedotov@gmail.com
Corresponding Member of the RAS
俄罗斯联邦, MoscowD. Ushkova
Lomonosov Moscow State University
Email: gennadiy.fedotov@gmail.com
俄罗斯联邦, Moscow
I. Gorepekin
Lomonosov Moscow State University
Email: gennadiy.fedotov@gmail.com
俄罗斯联邦, Moscow
O. Salimgareeva
Lomonosov Moscow State University
Email: gennadiy.fedotov@gmail.com
俄罗斯联邦, Moscow
A. Sukharev
Lomonosov Moscow State University
Email: gennadiy.fedotov@gmail.com
俄罗斯联邦, Moscow
参考
- ГОСТ 58595-2019 Почвы. Отбор проб. 8 с.
- Kaiser M., Kleber M., Berhe A. A. How air-drying and rewetting modify soil organic matter characteristics: an assessment to improve data interpretation and inference // Soil Biology and Biochemistry. 2015. V. 80. P. 324–340.
- Федотов Г. Н., Шеин Е. В., Ушкова Д. А., Салимгареева О. А., Горепекин И. В., Потапов Д. И. Надмолекулярные образования из молекул гуминовых веществ и их фрактальная организация // Почвоведение. 2023. № 8. С. 903–910.
- Шеин Е. В. Курс физики почв. М.: Изд-во МГУ, 2005. 432 с.
- Тюлин А. Ф. Органно-минеральные коллоиды в почве, их генезис и значение для корневого питания высших растений. М.: АН СССР, 1958. 52 с.
- Александрова Л. Н. Органическое вещество почвы и процессы его трансформации. Л.: Наука, 1980. 288 с.
- Cronan C. S., Cronan C. S. Mineral Weathering. Ecosystem Biogeochemistry: Element Cycling in the Forest Landscape. 2018. P. 87–100.
- Philippe A., Schaumann G. E. Interactions of dissolved organic matter with natural and engineered inorganic colloids: a review // Environmental science & technology. 2014. V. 48. № 16. P. 8946–8962.
- Воюцкий С. С. Курс коллоидной химии. М.: Химия, 1975. 512 с.
- Senesi N., Wilkinson K. J. Biophysical chemistry of fractal structures and processes in environmental systems. John Wiley & Sons, 2008. 342 p.
- Осипов В. И. Природа прочностных и деформационных свойств глинистых пород. М.: МГУ, 1979. 235 с.
- Шоба С. А., Потапов Д. И., Горепекин И. В., Ушкова Д. А., Грачева Т. А., Федотов Г. Н. Состояние почвенных гелей при разной пробоподготовке к вискозиметрии образцов дерново-подзолистой почвы // Доклады Российской академии наук. Науки о жизни. 2022. Т. 504. С. 240–244.
- Милановский Е. Ю. Гумусовые вещества почв как природные гидрофобно-гидрофильные соединения. М.: ГЕОС, 2009. 186 с.
- Оsterberg R., Mortensen K. Fractal dimension of humic acids. A small angle neutron scattering study // European Biophysics Journal. 1992. V. 21. P. 163–167.
- Angelico R., Colombo C., Di Iorio E., Brtnický M., Fojt J., Conte P. Humic substances: from supramolecular aggregation to fractal conformation – Is there time for a new paradigm? // Applied Sciences. 2023. V. 13. № 4. P. 2236.
- Вережников В. Н. Взаимодействие поверхностно-активных веществ и олигомерных электролитов в водных растворах // Вестник Воронежского государственного университета. Серия: Химия. Биология. Фармация. 2012. № 1. С. 29–32.
- Doerr S. H., Shakesby R. A., Walsh R. P. D. Soil water repellency: its causes, characteristics and hydro-geomorphological significance // Earth-Science Reviews. 2000. V. 51. № 1–4. P. 33–65.
- Скворцова Е. Б., Шеин Е. В., Абросимов К. Н., Романенко К. А., Юдина А. В., Клюева В. В., Хайдапова Д. Д., Рогов В. В. Влияние многократного замораживания-оттаивания на микроструктуру агрегатов дерново-подзолистой почвы (микротомографический анализ) // Почвоведение. 2018. № 2. С. 187–196.
- Dagesse D. F. Freezing cycle effects on water stability of soil aggregates // Canadian Journal of Soil Science. 2013. V. 93. № 4. P. 473–483.
补充文件
