Vortex convective flows formed during the melting of ice in single-component media

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The results of theoretical and experimental studies of convective vortex currents formed during ice melting, as well as physical modeling of the phenomenon of spontaneous rotation of an ice disk on the water surface, are presented. It is shown that the cause of the observed movements on the surface of initially quiescent water is a cellular convective flow generated by the process of ice melting at the lower boundary of the disk, and a new physical model of such rotation is constructed.

Sobre autores

T. Chaplina

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: tanya75.06@mail.ru
Rússia, Moscow

V. Pakhnenko

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences

Email: tanya75.06@mail.ru
Rússia, Moscow

Bibliografia

  1. Granin N. G. The ringed Baikal // Science from First Hands. 2009. V. 3. P. 22–23 (In Russian).
  2. Kouraev A. V., Zakharova E. A., Rémy F., Kostia noy A. G., Shimaraev M. N., Hall N. M. J., Suk nev A. Ya. Giant ice rings on Lakes Baikal and Hovs gol:inventory, associated water structure and potential formation mechanism // Limnology and Oceanography. 2016. V. 61. P. 1001–1014. doi: 10.1002/lno.10268.
  3. Nordell B., Westerstrom G. Large rotating ice discs on ice-covered rivers // Weather. 1997. V. 209. Р. 205–209.
  4. Зырянов В. Н., Кураев А. В., Костяной А. Г. Ледовые кольца Байкала: наблюдения, гипотезы, теория / Сборник трудов Международного симпозиума “Мезомасштабные и субмезомасштабные процессы в гидросфере и атмосфере”. Институт океанологии им. П.П. Ширшова Российской академии наук, 2018. С. 151–155.
  5. https://offshore-mag.ru
  6. https://earth-chronicles.ru/news/2020-11-26-146205
  7. Heard W. B. Steady-state convection with melting at a boundary // Physics of Fluids. 1977. V. 20. № 12. P. 1993–1999.
  8. Nguyen A. T., Menemenlis D., Kwok R. Improved mo deling of the Arctic halocline with a subgrid-scale brine rejection parameterization // Journal of Geo physical Researches. 2009. 114(C11). C11014. doi: 10.1029/2008JC005121.
  9. Nguyen A. T., Menemenlis D., Kwok R. Arctic ice–ocean simulation with optimized model para me ters: approach and assessment // Journal of Geo phy sical Researches. 2011. 116(C4). C04025. doi: 10.1029/2010JC006573.
  10. Зырянов В. Н. Сейши подо льдом // Водные ресурсы. 2011. Т. 38. № 3. С. 259–271.
  11. Kouraev A. V., Zakharova E. A., Rémy F., Kostia noy A. G., Shimaraev M. N., N. M. J. Hall, Zdoroven nov R. E., Suknev A. Y. Giant ice rings on lakes and field ob ser vations of lens-like eddies in the Middle Baikal (2016–2017) // Limnology and Oceanography. 2019. 64(6): 2738–2754. ISSN 19395590. doi: 10.1002/lno.11338.
  12. Dorbolo S., Adami N., Dubois C., Caps H., Vande walle N., Darbois-Texier B. Rotation of melting ice disks due to melt fluid flow // Physical Review E. 2016. 93(3):1–5. ISSN 24700053. doi: 10.1103/PhysRevE.93.033112.
  13. Айзерман М. А. Классическая механика. М.: Наука, 1980. 368 с.
  14. https://i.ytimg.com/vi/RUc-xRyBtSU/maxresdefault.jpg
  15. White D. B. The planforms and onset of convection with temperature dependent viscosity // JFM. 1988. V. 191. P. 247–268.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024