An Evaluation of Carbon Nanotube-based and Activated Carbon-based Nanocomposites for Fluoride and Other Pollutant Removal from Water: A Review


如何引用文章

全文:

详细

Abstract:Water is the most critical component of the earth's ecosystem because it is fundamental to the survival of plants and animals. However, our water supply is continuously polluting. Removing contaminants from water is a crucial part of addressing water scarcity and maintaining a healthy ecosystem for all. This review focuses on adsorption and the CNTs/AC family nano adsorbents and their contribution to the removal of fluoride and other contaminants. Many types of wastewater treatment methods have been employed, including precipitation, ion-exchange, adsorption, membrane filtration, etc. A water technology with great efficiency and low cost, without requiring costly infrastructure, is the most preferred option due to adsorption. Recently, the application of carbon family nanomaterials as adsorbents has been prevalent due to their phenomenal surface properties, simple customization, immense specific surface area, numerous variations in structural type, chemical stability, porosity, low density, ease of regeneration, and the ability to be reused. Hazardous contaminants, such as fluoride, generate major public health risks. Water contamination by heavy metals provides a significant health concern, including an increased chance of getting diseases like cancer, anaemia, carcinogenic effects, and acute effects in children. The increased presence of fluoride in water could cause fluorosis, joint pain, severe anaemia, and other problems. The following review focuses on current findings regarding the utilisation of CNTs and AC nanoparticles in the elimination of harmful contaminants and fluoride.

作者简介

Chandra Bhasin

Department of Chemistry, Hemchandracharya North Gujarat University

Email: info@benthamscience.net

Amanullakhan Pathan

, Shri Sarvajanik Science College (PG)

编辑信件的主要联系方式.
Email: info@benthamscience.net

Ruchita Patel

Department of Chemistry, Hemchandracharya North Gujarat University

Email: info@benthamscience.net

参考

  1. Sushma D, Richa S. Use of nanoparticles in water treatment: a review. Int Res J Environ Sci 2015; 4(10): 103-6.
  2. Ahmad I, Siddiqui WA, Qadir S, Ahmad T. Synthesis and characterization of molecular imprinted nanomaterials for the removal of heavy metals from water. J Mater Res Technol 2018; 7(3): 270-82. doi: 10.1016/j.jmrt.2017.04.010
  3. Prathna TC, Sharma SK, Kennedy M. Nanoparticles in household level water treatment: an overview. Separ Purif Tech 2018; 199: 260-70. doi: 10.1016/j.seppur.2018.01.061
  4. Kaur P, Thakur R, Malwal H, Manuja A, Chaudhury A. Biosynthesis of biocompatible and recyclable silver/iron and gold/iron core-shell nanoparticles for water purification technology. Biocatal Agric Biotechnol 2018; 14: 189-97. doi: 10.1016/j.bcab.2018.03.002
  5. Simonovic SP, Fahmy H. A new modeling approach for water resources policy analysis. Water Resour Res 1999; 35(1): 295-304. doi: 10.1029/1998WR900023
  6. Montgomery MA, Elimelech M. Water and sanitation in developing countries: including health in the equation. Environ Sci Technol 2007; 41(1): 17-24. doi: 10.1021/es072435t PMID: 17265923
  7. Zimmerman JB, Mihelcic JR, Smith AJ. Global stressors on water quality and quantity 2008. doi: 10.1021/es0871457
  8. Gautam PK, Singh A, Misra K, Sahoo AK, Samanta SK. Synthesis and applications of biogenic nanomaterials in drinking and wastewater treatment. J Environ Manage 2019; 231: 734-48. doi: 10.1016/j.jenvman.2018.10.104 PMID: 30408767
  9. Bora T, Dutta J. Applications of nanotechnology in wastewater treatment--a review. J Nanosci Nanotechnol 2014; 14(1): 613-26. doi: 10.1166/jnn.2014.8898 PMID: 24730286
  10. Harrison PTC. Fluoride in water: A UK perspective. J Fluor Chem 2005; 126(11-12): 1448-56. doi: 10.1016/j.jfluchem.2005.09.009
  11. Liu A, Ming J, Ankumah RO. Nitrate contamination in private wells in rural Alabama, United States. Sci Total Environ 2005; 346(1-3): 112-20. doi: 10.1016/j.scitotenv.2004.11.019 PMID: 15993687
  12. Hojjat Ansari M, Basiri Parsa J, Merati Z. Removal of fluoride from water by nanocomposites of POPOA/Fe3O4, POPOA/TiO2, PO-POT/Fe3O4 and POPOT/TiO2: Modelling and optimization via RSM. Chem Eng Res Des 2017; 126: 1-18. doi: 10.1016/j.cherd.2017.08.008
  13. Fan Y, Fu D, Zhou S, et al. Facile synthesis of goethite anchored regenerated graphene oxide nanocomposite and its application in the removal of fluoride from drinking water. Desalination Water Treat 2016; 57(58): 28393-404. doi: 10.1080/19443994.2016.1179222
  14. Chen Y, Zhang Q, Chen L, Bai H, Li L. Basic aluminum sulfate@graphene hydrogel composites: preparation and application for removal of fluoride. J Mater Chem A Mater Energy Sustain 2013; 1(42): 13101-10. doi: 10.1039/c3ta13285d
  15. Chen P, Wang T, Xiao Y, et al. Efficient fluoride removal from aqueous solution by synthetic Fe Mg La tri-metal nanocomposite and the analysis of its adsorption mechanism. J Alloys Compd 2018; 738: 118-29. doi: 10.1016/j.jallcom.2017.12.142
  16. Singh SK, Lawrance S, Bajpai J, Bajpai AK. Batch studies of alginate nanoparticles for efficient removal of fluoride ions from drinking water. Int J Eng Res Technol (Ahmedabad) 2013; 2: 1-11.
  17. Ranganathan AG, Chandrasekaran S. Stable and microcrystalline Ce-Fe Bi-metal oxide nano particles: Synthesis, characterization and fluoride adsorption performance in drinking water. Indian J Chem Technol 2019; 26(2): 122-30.
  18. Santhosh C, Velmurugan V, Jacob G, Jeong SK, Grace AN, Bhatnagar A. Role of nanomaterials in water treatment applications: A review. Chem Eng J 2016; 306: 1116-37. doi: 10.1016/j.cej.2016.08.053
  19. Kumar R, Chawla J. Carbon-based materials for de-fluoridation of water: current status and challenges.In:Carbon-based material for environmental protection and remediation. IntechOpen 2020.
  20. Suhag Roopal. “Overview of ground water in India.” PRS On Standing Committee On Water Resources, Legislative Research (February),12p (2016):
  21. Samal AK, Mishra PK, Biswas A. Assessment of origin and distribution of fluoride contamination in groundwater using an isotopic sig-nature from a part of the Indo-Gangetic Plain (IGP), India. HydroResearch 2020; 3: 75-84. doi: 10.1016/j.hydres.2020.05.001
  22. Adimalla N, Vasa SK, Li P. Evaluation of groundwater quality, peddavagu in central telangana (PCT), South India: An insight of control-ling factors of fluoride enrichment. Model Earth Syst Environ 2018; 4(2): 841-52. doi: 10.1007/s40808-018-0443-z
  23. Ayoob S, Gupta AK. Fluoride in drinking water: a review on the status and stress effects. Crit Rev Environ Sci Technol 2006; 36(6): 433-87. doi: 10.1080/10643380600678112
  24. Adimalla N, Li P, Qian H. Evaluation of groundwater contamination for fluoride and nitrate in semi-arid region of Nirmal Province, South India: a special emphasis on human health risk assessment (HHRA). Hum Ecol Risk Assess 2018. doi: 10.1080/10807039.2018.1460579
  25. Narsimha A, Sudarshan V. Assessment of fluoride contamination in groundwater from Basara, Adilabad district, Telangana state, India. Appl Water Sci 2017; 7(6): 2717-25. doi: 10.1007/s13201-016-0489-x
  26. Adimalla N, Venkatayogi S. Mechanism of fluoride enrichment in groundwater of hard rock aquifers in Medak, Telangana State, South India. Environ Earth Sci 2017; 76(1): 45. doi: 10.1007/s12665-016-6362-2
  27. Adimalla N, Li P, Venkatayogi S. Hydrogeochemical evaluation of groundwater quality for drinking and irrigation purposes and integrated interpretation with water quality index studies. Environ Process 2018; 5(2): 363-83. doi: 10.1007/s40710-018-0297-4
  28. Subba Rao N, Vidyasagar G, Surya Rao P, Bhanumurthy P. Assessment of hydrogeochemical processes in a coastal region: Application of multivariate statistical model. J Geol Soc India 2014; 84(4): 494-500. doi: 10.1007/s12594-014-0155-6
  29. Adimalla N, Venkatayogi S, Das SVG. Assessment of fluoride contamination and distribution: a case study from a rural part of Andhra Pradesh, India. Appl Water Sci 2019; 9(4): 94. doi: 10.1007/s13201-019-0968-y
  30. Yadav KK, Kumar S, Pham QB, et al. Fluoride contamination, health problems and remediation methods in Asian groundwater: A com-prehensive review. Ecotoxicol Environ Saf 2019; 182: 109362. doi: 10.1016/j.ecoenv.2019.06.045 PMID: 31254856
  31. Ali S, Fakhri Y, Golbini M, et al. Concentration of fluoride in groundwater of India: A systematic review, meta-analysis and risk as-sessment. Groundw Sustain Dev 2019; 9: 100224. doi: 10.1016/j.gsd.2019.100224
  32. Revelo-Mejía IA, Hardisson A, Rubio C, Gutiérrez ÁJ, Paz S. Dental fluorosis: the risk of misdiagnosis—a Review. Biol Trace Elem Res 2021; 199(5): 1762-70. doi: 10.1007/s12011-020-02296-4 PMID: 32705431
  33. Mallishery Shivani, Kashmira Sawant, and Mokshi Jain. "Fluoride toxicity: A review on dental fluorosis and its prevalence in India." Journal of Dental and Medical Sciences 19, no. 1 (2020): 48- 53.
  34. Srivastava S, Flora SJS. Fluoride in drinking water and skeletal fluorosis: a review of the global impact. Curr Environ Health Rep 2020; 7(2): 140-6. doi: 10.1007/s40572-020-00270-9 PMID: 32207100
  35. Dhillon A, Prasad S, Kumar D. Recent advances and spectroscopic perspectives in fluoride removal. Appl Spectrosc Rev 2017; 52(3): 175-230. doi: 10.1080/05704928.2016.1213737
  36. Meenakshi, Maheshwari RC. Fluoride in drinking water and its removal. J Hazard Mater 2006; 137(1): 456-63. doi: 10.1016/j.jhazmat.2006.02.024 PMID: 16600479
  37. Waghmare SS, Arfin T. Fluoride removal from water by various techniques. Int J Innov Sci Eng Technol 2015; 2(3): 560-71.
  38. Premathilaka RW, Liyanagedera ND. Fluoride in drinking water and nanotechnological approaches for eliminating excess fluoride. J Nanotechnol 2019; 2019: 1-15. doi: 10.1155/2019/2192383
  39. Anadão P. Nanocomposite filtration membranes for drinking water purification Water purification. Academic Press 2017; pp. 517-49. doi: 10.1016/B978-0-12-804300-4.00015-0
  40. Kumari P, Alam M, Siddiqi WA. Usage of nanoparticles as adsorbents for waste water treatment: An emerging trend. Sustain Mater Technol 2019; 22: e00128. doi: 10.1016/j.susmat.2019.e00128
  41. Gusain R, Kumar N, Ray SS. Recent advances in carbon nanomaterial-based adsorbents for water purification. Coord Chem Rev 2020; 405: 213111. doi: 10.1016/j.ccr.2019.213111
  42. Liu M, Zang Z, Zhang S, Ouyang G, Han R. Enhanced fluoride adsorption from aqueous solution by zirconium (IV)-impregnated mag-netic chitosan graphene oxide. Int J Biol Macromol 2021; 182: 1759-68. doi: 10.1016/j.ijbiomac.2021.05.116 PMID: 34048839
  43. Rafique A, Awan MA, Wasti A, Qazi IA, Arshad M. Removal of fluoride from drinking water using modified immobilized activated alumina. J Chem 2013; 2013: 1-7. doi: 10.1155/2013/386476
  44. Sivasankar V, Ramachandramoorthy T, Darchen A. Manganese dioxide improves the efficiency of earthenware in fluoride removal from drinking water. Desalination 2011; 272(1-3): 179-86. doi: 10.1016/j.desal.2011.01.021
  45. García-Sánchez JJ, Solache-Ríos M, Martínez-Miranda V, Solís Morelos C. Removal of fluoride ions from drinking water and fluoride solutions by aluminum modified iron oxides in a column system. J Colloid Interface Sci 2013; 407: 410-5. doi: 10.1016/j.jcis.2013.06.031 PMID: 23859818
  46. Mohapatra M, Hariprasad D, Mohapatra L, Anand S, Mishra BK. Mg-doped nano ferrihydrite—A new adsorbent for fluoride removal from aqueous solutions. Appl Surf Sci 2012; 258(10): 4228-36. doi: 10.1016/j.apsusc.2011.12.047
  47. Reyes Bahena JL, Robledo Cabrera A, López Valdivieso A, Herrera Urbina R. Fluoride adsorption onto α-Al2O3 and its effect on the zeta potential at the alumina–aqueous electrolyte interface. Sep Sci Technol 2002; 37(8): 1973-87. doi: 10.1081/SS-120003055
  48. Maliyekkal SM, Sharma AK, Philip L. Manganese-oxide-coated alumina: A promising sorbent for defluoridation of water. Water Res 2006; 40(19): 3497-506. doi: 10.1016/j.watres.2006.08.007 PMID: 17011020
  49. Chai L, Wang Y, Zhao N, Yang W, You X. Sulfate-doped Fe3O4/Al2O3 nanoparticles as a novel adsorbent for fluoride removal from drinking water. Water Res 2013; 47(12): 4040-9. doi: 10.1016/j.watres.2013.02.057 PMID: 23602616
  50. Viswanathan N, Meenakshi S. Enriched fluoride sorption using alumina/chitosan composite. J Hazard Mater 2010; 178(1-3): 226-32. doi: 10.1016/j.jhazmat.2010.01.067 PMID: 20144851
  51. Naghizadeh A, Gholami K. Bentonite and montmorillonite nanoparticles effectiveness in removal of fluoride from water solutions. J Water Health 2017; 15(4): 555-65. doi: 10.2166/wh.2017.052 PMID: 28771153
  52. Kong L, Tian Y, Pang Z, et al. Synchronous phosphate and fluoride removal from water by 3D rice-like lanthanum-doped La@MgAl nanocomposites. Chem Eng J 2019; 371: 893-902. doi: 10.1016/j.cej.2019.04.116
  53. Liu L, Cui Z, Ma Q, Cui W, Zhang X. One-step synthesis of magnetic iron–aluminum oxide/graphene oxide nanoparticles as a selective adsorbent for fluoride removal from aqueous solution. RSC Advances 2016; 6(13): 10783-91. doi: 10.1039/C5RA23676B
  54. Wu X, Zhang Y, Dou X, Yang M. Fluoride removal performance of a novel Fe–Al–Ce trimetal oxide adsorbent. Chemosphere 2007; 69(11): 1758-64. doi: 10.1016/j.chemosphere.2007.05.075 PMID: 17624402
  55. Ruan Z, Tian Y, Ruan J, et al. Synthesis of hydroxyapatite/multi-walled carbon nanotubes for the removal of fluoride ions from solu-tion. Appl Surf Sci 2017; 412: 578-90. doi: 10.1016/j.apsusc.2017.03.215
  56. Xu C, Li J, He F, et al. Al 2 O 3 –Fe 3 O 4 –expanded graphite nano-sandwich structure for fluoride removal from aqueous solution. RSC Advances 2016; 6(99): 97376-84. doi: 10.1039/C6RA19390K
  57. Zhang Y, Wu B, Xu H, et al. Nanomaterials-enabled water and wastewater treatment. NanoImpact 2016; 3-4: 22-39. doi: 10.1016/j.impact.2016.09.004
  58. Wang X, Lu J, Xing B. Sorption of organic contaminants by carbon nanotubes: influence of adsorbed organic matter. Environ Sci Technol 2008; 42(9): 3207-12. doi: 10.1021/es702971g PMID: 18522095
  59. Stafiej A, Pyrzynska K. Solid phase extraction of metal ions using carbon nanotubes. Microchem J 2008; 89(1): 29-33. doi: 10.1016/j.microc.2007.11.001
  60. Baruah A, Chaudhary V, Malik R, Tomer VK. Nanotechnology based solutions for wastewater treatmentNanotechnology in Water and wastewater treatment. Elsevier 2019; pp. 337-68. doi: 10.1016/B978-0-12-813902-8.00017-4
  61. Ansari M, Kazemipour M, Dehghani M, Kazemipour M. The defluoridation of drinking water using multi-walled carbon nanotubes. J Fluor Chem 2011; 132(8): 516-20. doi: 10.1016/j.jfluchem.2011.05.008
  62. Aqel A, El-Nour KMMA, Ammar RAA, Al-Warthan A. Carbon nanotubes, science and technology part (I) structure, synthesis and char-acterisation. Arab J Chem 2012; 5(1): 1-23. doi: 10.1016/j.arabjc.2010.08.022
  63. Yin Z, Cui C, Chen H, Duoni YuX, Qian W. The application of carbon nanotube/graphene‐based nanomaterials in wastewater treat-ment. Small 2020; 16(15): 1902301. doi: 10.1002/smll.201902301 PMID: 31788946
  64. Baby R, Saifullah B, Hussein MZ. Carbon nanomaterials for the treatment of heavy metal-contaminated water and environmental remedi-ation. Nanoscale Res Lett 2019; 14(1): 341. doi: 10.1186/s11671-019-3167-8 PMID: 31712991
  65. Hashemi B, Rezania S. Carbon-based sorbents and their nanocomposites for the enrichment of heavy metal ions: a review. Mikrochim Acta 2019; 186(8): 578. doi: 10.1007/s00604-019-3668-2 PMID: 31350596
  66. Dehghani MH, Haghighat GA, Yetilmezsoy K, et al. Adsorptive removal of fluoride from aqueous solution using single- and multi-walled carbon nanotubes. J Mol Liq 2016; 216: 401-10. doi: 10.1016/j.molliq.2016.01.057
  67. Affonso LN, Marques JL Jr, Lima VVC, et al. Removal of fluoride from fertilizer industry effluent using carbon nanotubes stabilized in chitosan sponge. J Hazard Mater 2020; 388: 122042. doi: 10.1016/j.jhazmat.2020.122042 PMID: 31954304
  68. Araga R, Kali S, Sharma CS. Coconut‐shell‐derived carbon/carbon nanotube composite for fluoride adsorption from aqueous solution. Clean 2019; 47(5): 1800286. doi: 10.1002/clen.201800286
  69. Faghihian H, Atarodi H, Kooravand M. Synthesis, treatment, and application of a novel carbon nanostructure for removal of fluoride from aqueous solution. Desalination Water Treat 2015; 54(9): 2432-40. doi: 10.1080/19443994.2014.899519
  70. Balarak D, Mahdavi Y, Bazrafshan E, Mahvi AH, Esfandyari Y. Adsorption of fluoride from aqueous solutions by carbon nanotubes: determination of equilibrium, kinetic, and thermodynamic parameters. Fluoride 2016; 49(1): 71.
  71. Ramamurthy SS, Chen Y, Kalyan MK, Rao GN, Chelli J, Mitra S. Carbon nanotube-zirconium dioxide hybrid for defluoridation of water. J Nanosci Nanotechnol 2011; 11(4): 3552-9. doi: 10.1166/jnn.2011.3806 PMID: 21776736
  72. Haghighat GA, Dehghani MH, Nasseri S, Mahvi AH, Rastkari N. Comparison of carbon nonotubes and activated alumina efficiencies in fluoride removal from drinking water. Indian J Sci Technol 2012; 5(3): 1-4. doi: 10.17485/ijst/2012/v5i3.35
  73. Roy S, Das P. Assessment on the defluoridation using novel activated carbon synthesized from tea waste: batch, statistical optimization and mathematical modeling. Journal of Industrial Pollution Control 2016; 32(2)
  74. Tefera N, Mulualem Y, Fito J. Adsorption of fluoride from aqueous solution and groundwater onto activated carbon of avocado seeds. Water Conservation Science and Engineering 2020; 5(3-4): 187-97. doi: 10.1007/s41101-020-00093-7
  75. Kumar GK, Kamath MS, Mallapur PS. Defluoridation of water by using low cost activated carbon prepared from lemon peels. J Basic Appl Eng Res 2016; 3: 658-60.
  76. Sharma A, Purohit H, Hussain MS, Suthar AK, Sharma S. Defluoridation of ground water using activated carbon of Ber (In- dian Jujube) leaves. International Journal of Engineering and Ap- plied. Sciences 2017; 4(5): 257469.
  77. Daifullah A, Yakout S, Elreefy S. Adsorption of fluoride in aqueous solutions using KMnO4-modified activated carbon derived from steam pyrolysis of rice straw. J Hazard Mater 2007; 147(1-2): 633-43. doi: 10.1016/j.jhazmat.2007.01.062 PMID: 17314006
  78. Dehghani MH, Farhang M, Alimohammadi M, Afsharnia M, Mckay G. Adsorptive removal of fluoride from water by activated carbon derived from CaCl2 -modified Crocus sativus leaves: Equilibrium adsorption isotherms, optimization, and influence of anions. Chem Eng Commun 2018; 205(7): 955-65. doi: 10.1080/00986445.2018.1423969
  79. Getachew T, Hussen A, Rao VM. Defluoridation of water by activated carbon prepared from banana (Musa paradisiaca) peel and coffee (Coffea arabica) husk. Int J Environ Sci Technol 2015; 12(6): 1857-66. doi: 10.1007/s13762-014-0545-8
  80. Halder G, Sinha K, Dhawane S. Defluoridation of wastewater using powdered activated carbon developed from Eichhornia crassipes stem: optimization by response surface methodology. Desalination Water Treat 2015; 56(4): 953-66. doi: 10.1080/19443994.2014.942375
  81. He L, Wang G, Zhang X, Zhang Y, Chen Y. Lanthanum-doped activated carbon derived from municipal sludge for enhanced defluorida-tion: characteristics and mechanism. Water Sci Technol 2020; 82(8): 1643-52. doi: 10.2166/wst.2020.435 PMID: 33107858
  82. Kim M, Choong CE, Hyun S, Park CM, Lee G. Mechanism of simultaneous removal of aluminum and fluoride from aqueous solution by La/Mg/Si-activated carbon. Chemosphere 2020; 253: 126580. doi: 10.1016/j.chemosphere.2020.126580 PMID: 32464758
  83. Ma Y, Wang SG, Fan M, Gong WX, Gao BY. Characteristics and defluoridation performance of granular activated carbons coated with manganese oxides. J Hazard Mater 2009; 168(2-3): 1140-6. doi: 10.1016/j.jhazmat.2009.02.145 PMID: 19345485
  84. Palodkar AV, Anupam K, Banerjee S, Halder G. Insight into preparation of activated carbon towards defluoridation of waste water: Op-timization, kinetics, equilibrium, and cost estimation. Environ Prog Sustain Energy 2017; 36(6): 1597-611. doi: 10.1002/ep.12613
  85. Pang T, Aye Chan TS, Jande YAC, Shen J. Removal of fluoride from water using activated carbon fibres modified with zirconium by a drop-coating method. Chemosphere 2020; 255: 126950. doi: 10.1016/j.chemosphere.2020.126950 PMID: 32380266
  86. Rashid US, Bezbaruah AN. Citric acid modified granular activated carbon for enhanced defluoridation. Chemosphere 2020; 252: 126639. doi: 10.1016/j.chemosphere.2020.126639 PMID: 32443281
  87. Said M, Machunda RL. Defluoridation of water supplies using coconut shells activated carbon: batch studies. Int J Sci Res 2014; 3(7): 2327-31.
  88. Sathish RS, Sairam S, Raja VG, Rao GN, Janardhana C. Defluoridation of water using zirconium impregnated coconut fiber carbon. Sep Sci Technol 2008; 43(14): 3676-94. doi: 10.1080/01496390802222541
  89. Suneetha M, Sundar BS, Ravindhranath K. Defluoridation of waters using low-cost HNO3 activated carbon derived from stems of Senna Occidentalis plant. Int J Environ Technol Manag 2015; 18(5/6): 420-47. doi: 10.1504/IJETM.2015.073079
  90. Talat M, Mohan S, Dixit V, Singh DK, Hasan SH, Srivastava ON. Effective removal of fluoride from water by coconut husk activated carbon in fixed bed column: Experimental and breakthrough curves analysis. Groundw Sustain Dev 2018; 7: 48-55. doi: 10.1016/j.gsd.2018.03.001
  91. Brunson LR, Sabatini DA. Methods for optimizing activated materials for removing fluoride from drinking water sources. J Environ Eng 2016; 142(2): 04015078. doi: 10.1061/(ASCE)EE.1943-7870.0001044
  92. Mullick A, Neogi S. Acoustic cavitation induced synthesis of zirconium impregnated activated carbon for effective fluoride scavenging from water by adsorption. Ultrason Sonochem 2018; 45: 65-77. doi: 10.1016/j.ultsonch.2018.03.002 PMID: 29705326
  93. Sathish RS, Raju NSR, Raju GS, Nageswara Rao G, Kumar KA, Janardhana C. Equilibrium and kinetic studies for fluoride adsorption from water on zirconium impregnated coconut shell carbon. Sep Sci Technol 2007; 42(4): 769-88. doi: 10.1080/01496390601070067
  94. Yadav AK, Abbassi R, Gupta A, Dadashzadeh M. Removal of fluoride from aqueous solution and groundwater by wheat straw, sawdust and activated bagasse carbon of sugarcane. Ecol Eng 2013; 52: 211-8. doi: 10.1016/j.ecoleng.2012.12.069
  95. Silveira C, Shimabuku QL, Fernandes Silva M, Bergamasco R. Iron-oxide nanoparticles by the green synthesis method using Moringa oleifera leaf extract for fluoride removal. Environ Technol 2018; 39(22): 2926-36. doi: 10.1080/09593330.2017.1369582 PMID: 28823221
  96. Siddique A, Nayak AK, Singh J. Synthesis of FeCl3-activated carbon derived from waste Citrus limetta peels for removal of fluoride: An eco-friendly approach for the treatment of groundwater and bio-waste collectively. Groundw Sustain Dev 2020; 10: 100339. doi: 10.1016/j.gsd.2020.100339
  97. Mullick A, Neogi S. Ultrasound assisted synthesis of Mg-Mn-Zr impregnated activated carbon for effective fluoride adsorption from water. Ultrason Sonochem 2019; 50: 126-37. doi: 10.1016/j.ultsonch.2018.09.010 PMID: 30245202
  98. Mahvi AH, Mostafapour FK, Balarak D. Adsorption of fluoride from aqueous solution by eucalyptus bark activated carbon: Thermody-namic analysis. Fluoride 2019; 52(4): 562-8.
  99. Chen CL, Park SW, Su JF, et al. The adsorption characteristics of fluoride on commercial activated carbon treated with quaternary am-monium salts (Quats). Sci Total Environ 2019; 693: 133605. doi: 10.1016/j.scitotenv.2019.133605 PMID: 31634998
  100. Mariappan R, Vairamuthu R, Ganapathy A. Use of chemically activated cotton nut shell carbon for the removal of fluoride contaminated drinking water: Kinetics evaluation. Chin J Chem Eng 2015; 23(4): 710-21. doi: 10.1016/j.cjche.2014.05.019
  101. Mei L, Qiao H, Ke F, et al. One-step synthesis of zirconium dioxide-biochar derived from Camellia oleifera seed shell with enhanced removal capacity for fluoride from water. Appl Surf Sci 2020; 509: 144685. doi: 10.1016/j.apsusc.2019.144685
  102. Saini A, Maheshwari PH, Tripathy SS, Waseem S, Dhakate SR. Processing of rice straw to derive carbon with efficient de-fluoridation properties for drinking water treatment. J Water Process Eng 2020; 34: 101136. doi: 10.1016/j.jwpe.2020.101136
  103. Takmil F, Esmaeili H, Mousavi SM, Hashemi SA. Nano-magnetically modified activated carbon prepared by oak shell for treatment of wastewater containing fluoride ion. Adv Powder Technol 2020; 31(8): 3236-45. doi: 10.1016/j.apt.2020.06.015
  104. Li YH, Wang S, Zhang X, et al. Adsorption of fluoride from water by aligned carbon nanotubes. Mater Res Bull 2003; 38(3): 469-76. doi: 10.1016/S0025-5408(02)01063-2
  105. Tang Q, Duan T, Li P, Zhang P, Wu D. Enhanced defluoridation capacity from aqueous media via hydroxyapatite decorated with carbon nanotube. Front Chem 2018; 6: 104. doi: 10.3389/fchem.2018.00104 PMID: 29696138
  106. Yang Y, Du X, Abudula A, et al. Highly efficient defluoridation using a porous MWCNT@NiMn-LDH composites based on ion transport of EDL coupled with ligand exchange mechanism. Separ Purif Tech 2019; 223: 154-61. doi: 10.1016/j.seppur.2019.04.052
  107. Li YH, Wang S, Cao A, et al. Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes. Chem Phys Lett 2001; 350(5-6): 412-6. doi: 10.1016/S0009-2614(01)01351-3
  108. Leyva Ramos R, Ovalle-Turrubiartes J, Sanchez-Castillo MA. Adsorption of fluoride from aqueous solution on aluminum-impregnated carbon. Carbon 1999; 37(4): 609-17. doi: 10.1016/S0008-6223(98)00231-0
  109. Veeraputhiran V, Alagumuthu G. Sorption equilibrium of fluoride onto Phyllanthus emblica activated carbon. Int J Res Chem Environ 2011; 1: 42-7.
  110. Choong CE, Kim M, Yoon S, Lee G, Park CM. Mesoporous La/Mg/Si-incorporated palm shell activated carbon for the highly efficient removal of aluminum and fluoride from water. J Taiwan Inst Chem Eng 2018; 93: 306-14. doi: 10.1016/j.jtice.2018.07.035
  111. Singh K, Lataye DH, Wasewar KL. Removal of fluoride from aqueous solution by using bael (Aegle marmelos) shell activated carbon: Kinetic, equilibrium and thermodynamic study. J Fluor Chem 2017; 194: 23-32. doi: 10.1016/j.jfluchem.2016.12.009
  112. Kumar D, Tomar V, Mishra AK. Removal of fluoride from potable water using smart nanomaterial as adsorbent. Hoboken, NJ: John Wiley & Sons 2014; pp. 285-308. doi: 10.1002/9781118939314.ch11
  113. Tlili I, Alkanhal TA. Nanotechnology for water purification: electrospun nanofibrous membrane in water and wastewater treatment. J Water Reuse Desalin 2019; 9(3): 232-48. doi: 10.2166/wrd.2019.057
  114. Adak MK, Sen A, Mukherjee A, Sen S, Dhak D. Removal of fluoride from drinking water using highly efficient nanoadsorbent, Al(III)-Fe(III)-La(III) trimetallic oxide prepared by chemical route. J Alloys Compd 2017; 719: 460-9. doi: 10.1016/j.jallcom.2017.05.149
  115. Pekakis PA, Xekoukoulotakis NP, Mantzavinos D. Treatment of textile dyehouse wastewater by TiO2 photocatalysis. Water Res 2006; 40(6): 1276-86. doi: 10.1016/j.watres.2006.01.019 PMID: 16510167
  116. Saha P, Chowdhury S, Gupta S, Kumar I. Insight into adsorption equilibrium, kinetics and thermodynamics of Malachite Green onto clayey soil of Indian origin. Chem Eng J 2010; 165(3): 874-82. doi: 10.1016/j.cej.2010.10.048
  117. Husain M, Husain Q. Applications of redox mediators in the treatment of organic pollutants by using oxidoreductive enzymes: a review. Crit Rev Environ Sci Technol 2007; 38(1): 1-42. doi: 10.1080/10643380701501213
  118. Michael I, Rizzo L, McArdell CS, et al. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review. Water Res 2013; 47(3): 957-95. doi: 10.1016/j.watres.2012.11.027 PMID: 23266388
  119. Chowdhury S, Balasubramanian R. Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater. Adv Colloid Interface Sci 2014; 204: 35-56. doi: 10.1016/j.cis.2013.12.005 PMID: 24412086
  120. Sweetman MJ, May S, Mebberson N, et al. Activated carbon,carbon nanotubes and graphene: materials and composites for advanced water purification. C 2017; 3(2): 18. doi: 10.3390/c3020018
  121. Velma V, Vutukuru SS, Tchounwou PB. Ecotoxicology of hexavalent chromium in freshwater fish: a critical review. Rev Environ Health 2009; 24(2): 129-45. doi: 10.1515/REVEH.2009.24.2.129 PMID: 19658319
  122. Oliveira H. Chromium as an environmental pollutant: insights on induced plant toxicity. J Bot 2012; 2012: 1-8. doi: 10.1155/2012/375843
  123. Wani AL, Ara A, Usmani JA. Lead toxicity: a review. Interdiscip Toxicol 2015; 8(2): 55-64. doi: 10.1515/intox-2015-0009 PMID: 27486361
  124. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 2014; 7(2): 60-72. doi: 10.2478/intox-2014-0009 PMID: 26109881
  125. Mazumder DG. Health effects chronic arsenic toxicityHandbook of arsenic toxicology. Academic Press 2015; pp. 137-77. doi: 10.1016/B978-0-12-418688-0.00006-X
  126. Bernhoft RA. Mercury toxicity and treatment: a review of the literature. J Environ Public Health 2012; 2012: 1-10. doi: 10.1155/2012/460508 PMID: 22235210
  127. Rafati Rahimzadeh M, Rafati Rahimzadeh M, Kazemi S, Moghadamnia AA. Cadmium toxicity and treatment: An update. Caspian J Intern Med 2017; 8(3): 135-45. doi: 10.22088%2Fcjim.8.3.135 PMID: 28932363
  128. Fosmire GJ. Zinc toxicity. Am J Clin Nutr 1990; 51(2): 225-7. doi: 10.1093/ajcn/51.2.225 PMID: 2407097
  129. Wallig MA, Keenan KP. Nutritional toxicologic pathology Haschek and Rousseaux’s Handbook of Toxicologic Pathology. Academic Press 2013; pp. 1077-121. doi: 10.1016/B978-0-12-415759-0.00036-4
  130. Taylor AA, Tsuji JS, Garry MR, et al. Critical review of exposure and effects: Implications for setting regulatory health criteria for in-gested copper. Environ Manage 2020; 65(1): 131-59. doi: 10.1007/s00267-019-01234-y PMID: 31832729
  131. Genchi G, Carocci A, Lauria G, Sinicropi MS, Catalano A. Nickel: Human health and environmental toxicology. Int J Environ Res Public Health 2020; 17(3): 679. doi: 10.3390/ijerph17030679 PMID: 31973020
  132. Nicolopoulou-Stamati P, Maipas S, Kotampasi C, Stamatis P, Hens L. Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front Public Health 2016; 4: 148. doi: 10.3389/fpubh.2016.00148 PMID: 27486573
  133. Kodavanti PRS, Loganathan BG. Organohalogen pollutants and human health 2017. doi: 10.1016/B978-0-12-803678-5.00318-0
  134. Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC. Effects of textile dyes on health and the environment and bioremediation poten-tial of living organisms. Biotechnology Research and Innovation 2019; 3(2): 275-90. doi: 10.1016/j.biori.2019.09.001
  135. Lu C, Chiu H. Adsorption of zinc(II) from water with purified carbon nanotubes. Chem Eng Sci 2006; 61(4): 1138-45. doi: 10.1016/j.ces.2005.08.007
  136. Gupta VK, Agarwal S, Saleh TA. Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water Res 2011; 45(6): 2207-12. doi: 10.1016/j.watres.2011.01.012 PMID: 21303713
  137. Li YH, Wang S, Wei J, et al. Lead adsorption on carbon nanotubes. Chem Phys Lett 2002; 357(3-4): 263-6. doi: 10.1016/S0009-2614(02)00502-X
  138. Lu C, Liu C. Removal of nickel(II) from aqueous solution by carbon nanotubes. J Chem Technol Biotechnol 2006; 81(12): 1932-40. doi: 10.1002/jctb.1626
  139. Li YH, Ding J, Luan Z, et al. Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nano-tubes. Carbon 2003; 41(14): 2787-92. doi: 10.1016/S0008-6223(03)00392-0
  140. Anitha K, Namsani S, Singh JK. Removal of heavy metal ions using a functionalized single-walled carbon nanotube: a molecular dynam-ics study. J Phys Chem A 2015; 119(30): 8349-58. doi: 10.1021/acs.jpca.5b03352 PMID: 26158866
  141. Lu C, Chung YL, Chang KF. Adsorption of trihalomethanes from water with carbon nanotubes. Water Res 2005; 39(6): 1183-9. doi: 10.1016/j.watres.2004.12.033 PMID: 15766973
  142. Wu CH. Adsorption of reactive dye onto carbon nanotubes: Equilibrium, kinetics and thermodynamics. J Hazard Mater 2007; 144(1-2): 93-100. doi: 10.1016/j.jhazmat.2006.09.083 PMID: 17081687
  143. Chatterjee S, Lee MW, Woo SH. Adsorption of congo red by chitosan hydrogel beads impregnated with carbon nanotubes. Bioresour Technol 2010; 101(6): 1800-6. doi: 10.1016/j.biortech.2009.10.051 PMID: 19962883
  144. Bazrafshan E, Mostafapour FK, Hosseini AR, Raksh Khorshid A, Mahvi AH. Decolorisation of reactive red 120 dye by using single-walled carbon nanotubes in aqueous solutions. J Chem 2013; 2013: 1-8. doi: 10.1155/2013/938374
  145. Yang K, Zhu L, Xing B. Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environ Sci Technol 2006; 40(6): 1855-61. doi: 10.1021/es052208w PMID: 16570608
  146. Wang S, Ng CW, Wang W, Li Q, Li L. A comparative study on the adsorption of acid and reactive dyes on multiwall carbon nanotubes in single and binary dye systems. J Chem Eng Data 2012; 57(5): 1563-9. doi: 10.1021/je3001552
  147. Liao Q, Sun J, Gao L. The adsorption of resorcinol from water using multi-walled carbon nanotubes. Colloids Surf A Physicochem Eng Asp 2008; 312(2-3): 160-5. doi: 10.1016/j.colsurfa.2007.06.045
  148. Hyung H, Kim JH. Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: effect of NOM characteristics and water quality parameters. Environ Sci Technol 2008; 42(12): 4416-21. doi: 10.1021/es702916h PMID: 18605564
  149. Joseph L, Flora JRV, Park YG, Badawy M, Saleh H, Yoon Y. Removal of natural organic matter from potential drinking water sources by combined coagulation and adsorption using carbon nanomaterials. Separ Purif Tech 2012; 95: 64-72. doi: 10.1016/j.seppur.2012.04.033
  150. Ma J, Yu F, Zhou L, et al. Enhanced adsorptive removal of methyl orange and methylene blue from aqueous solution by alkali-activated multiwalled carbon nanotubes. ACS Appl Mater Interfaces 2012; 4(11): 5749-60. doi: 10.1021/am301053m PMID: 23062571
  151. Moradi O. Adsorption behavior of basic red 46 by single-walled carbon nanotubes surfaces. Fuller Nanotub Carbon Nanostruct 2013; 21(4): 286-301. doi: 10.1080/1536383X.2011.572317
  152. Zhang L, Song X, Liu X, Yang L, Pan F, Lv J. Studies on the removal of tetracycline by multi-walled carbon nanotubes. Chem Eng J 2011; 178: 26-33. doi: 10.1016/j.cej.2011.09.127
  153. Zhang L, Xu T, Liu X, Zhang Y, Jin H. Adsorption behavior of multi-walled carbon nanotubes for the removal of olaquindox from aqueous solutions. J Hazard Mater 2011; 197: 389-96. doi: 10.1016/j.jhazmat.2011.09.100 PMID: 22018864
  154. Mehrizad A, Aghaie M, Gharbani P, Dastmalchi S, Monajjemi M, Zare K. Comparison of 4-chloro-2-nitrophenol adsorption on single-walled and multi-walled carbon nanotubes. Iranian J Environ Health Sci Engin 2012; 9(1): 1-6. doi: 10.1186/1735-2746-9-5
  155. Lou JC, Jung MJ, Yang HW, Han JY, Huang WH. Removal of dissolved organic matter (DOM) from raw water by single-walled carbon nanotubes (SWCNTs). J Environ Sci Health Part A Tox Hazard Subst Environ Eng 2011; 46(12): 1357-65. doi: 10.1080/10934529.2011.606688 PMID: 21942388
  156. Yu F, Wu Y, Li X, Ma J. Kinetic and thermodynamic studies of toluene, ethylbenzene, and m-xylene adsorption from aqueous solutions onto KOH-activated multiwalled carbon nanotubes. J Agric Food Chem 2012; 60(50): 12245-53. doi: 10.1021/jf304104z PMID: 23185965
  157. Zhu HY, Jiang R, Xiao L, Zeng GM. Preparation, characterization, adsorption kinetics and thermodynamics of novel magnetic chitosan enwrapping nanosized γ-Fe2O3 and multi-walled carbon nanotubes with enhanced adsorption properties for methyl orange. Bioresour Technol 2010; 101(14): 5063-9. doi: 10.1016/j.biortech.2010.01.107 PMID: 20219366
  158. Álvarez-Torrellas S, Rodríguez A, Ovejero G, García J. Comparative adsorption performance of ibuprofen and tetracycline from aqueous solution by carbonaceous materials. Chem Eng J 2016; 283: 936-47. doi: 10.1016/j.cej.2015.08.023
  159. Ma J, Zhuang Y, Yu F. Facile method for the synthesis of a magnetic CNTs–C@Fe–chitosan composite and its application in tetracycline removal from aqueous solutions. Phys Chem Chem Phys 2015; 17(24): 15936-44. doi: 10.1039/C5CP02542G PMID: 26023730
  160. Ncibi MC, Sillanpää M. Optimized removal of antibiotic drugs from aqueous solutions using single, double and multi-walled carbon nanotubes. J Hazard Mater 2015; 298: 102-10. doi: 10.1016/j.jhazmat.2015.05.025 PMID: 26024613
  161. Wang F, Sun W, Pan W, Xu N. Adsorption of sulfamethoxazole and 17β-estradiol by carbon nanotubes/CoFe2O4 composites. Chem Eng J 2015; 274: 17-29. doi: 10.1016/j.cej.2015.03.113
  162. Yang Q, Chen G, Zhang J, Li H. Adsorption of sulfamethazine by multi-walled carbon nanotubes: effects of aqueous solution chemistry. RSC Advances 2015; 5(32): 25541-9. doi: 10.1039/C4RA15056B
  163. Yang W, Lu Y, Zheng F, Xue X, Li N, Liu D. Adsorption behavior and mechanisms of norfloxacin onto porous resins and carbon nano-tube. Chem Eng J 2012; 179: 112-8. doi: 10.1016/j.cej.2011.10.068
  164. Hsieh SH, Horng JJ. Adsorption behavior of heavy metal ions by carbon nanotubes grown on microsized Al2O3 particles. J Univ Sci Technol Beijing 2007; 14(1): 77-84. doi: 10.1016/S1005-8850(07)60016-4
  165. Karnib M, Kabbani A, Holail H, Olama Z. Heavy metals removal using activated carbon, silica and silica activated carbon composite. Energy Procedia 2014; 50: 113-20. doi: 10.1016/j.egypro.2014.06.014
  166. Luo X, Lei X, Cai N, Xie X, Xue Y, Yu F. Removal of heavy metal ions from water by magnetic cellulose-based beads with embedded chemically modified magnetite nanoparticles and activated carbon. ACS Sustain Chem& Eng 2016; 4(7): 3960-9. doi: 10.1021/acssuschemeng.6b00790
  167. Rahmani-Sani A, Singh P, Raizada P, et al. Use of chicken feather and eggshell to synthesize a novel magnetized activated carbon for sorption of heavy metal ions. Bioresour Technol 2020; 297: 122452. doi: 10.1016/j.biortech.2019.122452 PMID: 31787507
  168. Nejadshafiee V, Islami MR. Adsorption capacity of heavy metal ions using sultone-modified magnetic activated carbon as a bioadsorbent. Mater Sci Eng C 2019; 101: 42-52. doi: 10.1016/j.msec.2019.03.081 PMID: 31029336
  169. Yegane Badi M, Azari A, Pasalari H, Esrafili A, Farzadkia M. Modification of activated carbon with magnetic Fe 3 O 4 nanoparticle com-posite for removal of ceftriaxone from aquatic solutions. J Mol Liq 2018; 261: 146-54. doi: 10.1016/j.molliq.2018.04.019
  170. Fu R, Liu Y, Lou Z, Wang Z, Baig SA, Xu X. Adsorptive removal of Pb(II) by magnetic activated carbon incorporated with amino groups from aqueous solutions. J Taiwan Inst Chem Eng 2016; 62: 247-58. doi: 10.1016/j.jtice.2016.02.012
  171. Kharrazi SM, Mirghaffari N, Dastgerdi MM, Soleimani M. A novel postmodification of powdered activated carbon prepared from ligno-cellulosic waste through thermal tension treatment to enhance the porosity and heavy metals adsorption. Powder Technol 2020; 366: 358-68. doi: 10.1016/j.powtec.2020.01.065
  172. Sharma M, Joshi M, Nigam S, et al. ZnO tetrapods and activated carbon based hybrid composite: Adsorbents for enhanced decontamina-tion of hexavalent chromium from aqueous solution. Chem Eng J 2019; 358: 540-51. doi: 10.1016/j.cej.2018.10.031
  173. Sharma G, Naushad M. Adsorptive removal of noxious cadmium ions from aqueous medium using activated carbon/zirconium oxide composite: Isotherm and kinetic modelling. J Mol Liq 2020; 310: 113025. doi: 10.1016/j.molliq.2020.113025
  174. Li H, Zheng F, Wang J, et al. Facile preparation of zeolite-activated carbon composite from coal gangue with enhanced adsorption per-formance. Chem Eng J 2020; 390: 124513. doi: 10.1016/j.cej.2020.124513
  175. Osman AI, Blewitt J, Abu-Dahrieh JK, et al. Production and characterisation of activated carbon and carbon nanotubes from potato peel waste and their application in heavy metal removal. Environ Sci Pollut Res Int 2019; 26(36): 37228-41. doi: 10.1007/s11356-019-06594-w PMID: 31745803
  176. Zhu S, Yang N, Zhang D. Poly(N,N-dimethylaminoethyl methacrylate) modification of activated carbon for copper ions removal. Mater Chem Phys 2009; 113(2-3): 784-9. doi: 10.1016/j.matchemphys.2008.08.025
  177. Moussa SI, Ali MMS, Sheha RR. The performance of activated carbon/NiFe2O4 magnetic composite to retain heavy metal ions from aqueous solution. Chin J Chem Eng 2021; 29: 135-45. doi: 10.1016/j.cjche.2020.07.036
  178. Oladipo AA, Gazi M. Microwaves initiated synthesis of activated carbon-based composite hydrogel for simultaneous removal of cop-per(II) ions and direct red 80 dye: A multi-component adsorption system. J Taiwan Inst Chem Eng 2015; 47: 125-36. doi: 10.1016/j.jtice.2014.09.027
  179. Park HG, Kim TW, Chae MY, Yoo IK. Activated carboncontaining alginate adsorbent for the simultaneous removal of heavy metals and toxic organics. Process Biochem 2007; 42(10): 1371-7. doi: 10.1016/j.procbio.2007.06.016
  180. Nejadshafiee V, Islami MR. Intelligent-activated carbon prepared from pistachio shells precursor for effective adsorption of heavy met-als from industrial waste of copper mine. Environ Sci Pollut Res Int 2020; 27(2): 1625-39. doi: 10.1007/s11356-019-06732-4 PMID: 31755054
  181. Azari A, Kakavandi B, Kalantary RR, et al. Rapid and efficient magnetically removal of heavy metals by magnetite-activated carbon composite: a statistical design approach. J Porous Mater 2015; 22(4): 1083-96. doi: 10.1007/s10934-015-9983-z
  182. Amuda OS, Giwa AA, Bello IA. Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon. Biochem Eng J 2007; 36(2): 174-81. doi: 10.1016/j.bej.2007.02.013
  183. Tounsadi H, Khalidi A, Abdennouri M, Barka N. Activated carbon from Diplotaxis Harra biomass: Optimization of preparation condi-tions and heavy metal removal. J Taiwan Inst Chem Eng 2016; 59: 348-58. doi: 10.1016/j.jtice.2015.08.014
  184. Baccar R, Bouzid J, Feki M, Montiel A. Preparation of activated carbon from Tunisian olive-waste cakes and its application for adsorp-tion of heavy metal ions. J Hazard Mater 2009; 162(2-3): 1522-9. doi: 10.1016/j.jhazmat.2008.06.041 PMID: 18653277
  185. Wang K, Zhao J, Li H, Zhang X, Shi H. Removal of cadmium (II) from aqueous solution by granular activated carbon supported magnesium hydroxide. J Taiwan Inst Chem Eng 2016; 61: 287-91. doi: 10.1016/j.jtice.2016.01.006
  186. Le VT, Tran TKN, Tran DL, et al. One-pot synthesis of a novel magnetic activated carbon/clay composite for removal of heavy metals from aqueous solution. J Dispers Sci Technol 2019; 40(12): 1761-76. doi: 10.1080/01932691.2018.1541414
  187. Sato S, Yoshihara K, Moriyama K, Machida M, Tatsumoto H. Influence of activated carbon surface acidity on adsorption of heavy metal ions and aromatics from aqueous solution. Appl Surf Sci 2007; 253(20): 8554-9. doi: 10.1016/j.apsusc.2007.04.025
  188. Guo J, Song Y, Ji X, et al. Preparation and characterization of nanoporous activated carbon derived from prawn shell and its application for removal of heavy metal ions. Materials 2019; 12(2): 241. doi: 10.3390/ma12020241 PMID: 30642039
  189. Yanagisawa H, Matsumoto Y, Machida M. Adsorption of Zn(II) and Cd(II) ions onto magnesium and activated carbon composite in aqueous solution. Appl Surf Sci 2010; 256(6): 1619-23. doi: 10.1016/j.apsusc.2009.10.010
  190. Zhang Z, Wang T, Zhang H, Liu Y, Xing B. Adsorption of Pb(II) and Cd(II) by magnetic activated carbon and its mechanism. Sci Total Environ 2021; 757: 143910. doi: 10.1016/j.scitotenv.2020.143910 PMID: 33310569
  191. Nogueira HP, Toma SH, Silveira AT, Carvalho AAC, Fioroto AM, Araki K. Efficient Cr(VI) removal from wastewater by activated carbon superparamagnetic composites. Microchem J 2019; 149: 104025. doi: 10.1016/j.microc.2019.104025
  192. Zhang QL, Lin YC, Chen X, Gao NY. A method for preparing ferric activated carbon composites adsorbents to remove arsenic from drinking water. J Hazard Mater 2007; 148(3): 671-8. doi: 10.1016/j.jhazmat.2007.03.026 PMID: 17434260
  193. Sreejalekshmi KG, Krishnan KA, Anirudhan TS. Adsorption of Pb(II) and Pb(II)-citric acid on sawdust activated carbon: Kinetic and equilibrium isotherm studies. J Hazard Mater 2009; 161(2-3): 1506-13. doi: 10.1016/j.jhazmat.2008.05.002 PMID: 18550276
  194. Shahrashoub M, Bakhtiari S. The efficiency of activated carbon/magnetite nanoparticles composites in copper removal: Industrial waste recovery, green synthesis, characterization, and adsorption-desorption studies. Microporous Mesoporous Mater 2021; 311: 110692. doi: 10.1016/j.micromeso.2020.110692
  195. Habuda-Stanić M, Ravančić M, Flanagan A. A review on adsorption of fluoride from aqueous solution. Materials 2014; 7(9): 6317-66. doi: 10.3390/ma7096317 PMID: 28788194
  196. Alijani H, Shariatinia Z. Synthesis of high growth rate SWCNTs and their magnetite cobalt sulfide nanohybrid as super-adsorbent for mercury removal. Chem Eng Res Des 2018; 129: 132-49. doi: 10.1016/j.cherd.2017.11.014
  197. Dehghani MH, Taher MM, Bajpai AK, et al. Removal of noxious Cr (VI) ions using singlewalled carbon nanotubes and multi-walled carbon nanotubes. Chem Eng J 2015; 279: 344-52. doi: 10.1016/j.cej.2015.04.151

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024