Green Capping Agents and Digestive Ripening for Size Control of Magnetite for Magnetic Fluid Hyperthermia


Дәйексөз келтіру

Толық мәтін

Аннотация

Background:Magnetite is the most recognized iron oxide candidate used for various biological applications.

Objective:This work is a complete study that addresses the synthesis of magnetic nanoparticles and investigates the feasibility of using green tea and ascorbic acid as capping agents.

Methods:Synthesis of magnetite by two wet chemical methods namely: coprecipitation and solvothermal methods. The samples were characterized using X-ray diffraction (XRD), transmission electron microscope (TEM), and vibrating sample magnetometer (VSM).

Results:The results reveal the impact of coating on the size and morphology of the particles. The study also proves that autoclaving the samples prepared by coprecipitation results in smaller particle size and narrower size distribution due to digestive ripening. In addition, a novel and facile methodology for coating magnetite with polyethylene glycol is presented. The potential of the particles to be used for magnetic fluid hyperthermia is assessed by measuring the specific absorption rate (SAR) of the samples.

Conclusión:The results show that all the prepared magnetite samples showed a promising capacity to be used as magnetic fluid hyperthermia agents.

Авторлар туралы

Heba Kahil

Physics Department, Faculty of Science,, Ain Shams University

Email: info@benthamscience.net

Ismail Ali

Cyclotron Project, Nuclear Research Center, Atomic Energy Authority

Email: info@benthamscience.net

Hadir Ebraheem

Physics Department, Faculty of Science, Ain Shams University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Majetich SA. Magnetic Nanoparticles and Their Applications Nanostructured Materials: Processing. (2nd ed.). Properties, and Applications 2007; pp. 439-85.
  2. Karade VC, Waifalkar PP, Dongle TD, et al. Greener synthesis of magnetite nanoparticles using green tea extract and their magnetic properties. Mater Res Express 2017; 4(9): 096102. doi: 10.1088/2053-1591/aa892f
  3. Kim DH, Lee SH, Im KH, et al. Surface-modified magnetite nanoparticles for hyperthermia: Preparation, characterization, and cytotoxicity studies. Curr Appl Phys 2006; 6(1): e242-6. doi: 10.1016/j.cap.2006.01.048
  4. Dobson, Yiu HH, Dobson J. Magnetic nanoparticles for gene and drug delivery. Int J Nanomedicine 2008; 3(2): 169-80. doi: 10.2147/IJN.S1608 PMID: 18686777
  5. Gamal AALR, El-Sayed ESM, El-Hamoly T, Kahil H. Development and bioevaluation of controlled release 5-aminoisoquinoline nanocomposite: A synergistic anticancer activity against human colon cancer. AIMS Biophys 2022; 9(1): 21-41. doi: 10.3934/biophy.2022003
  6. Stephen ZR, Forrest MK, Miqin Z. Magnetite nanoparticles for medical MR imaging. Mater Today (Kidlington) 2011; 14(7-8): 330-8. doi: 10.1016/S1369-7021(11)70163-8 PMID: 22389583
  7. El Ghandoor H, Zidan H, Khalil MMH, Ismail MIM. Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles. Int J Electrochem Sci 2012; 7: 5734-45.
  8. Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 2003; 36(13): R167-81. doi: 10.1088/0022-3727/36/13/201
  9. Cornell RM, Schwertmann U. 2003.
  10. Rowan AD, Patterson CH, Gasparov LV. Hybrid density functional theory applied to magnetite: Crystal structure, charge order, and phonons. Phys Rev B Condens Matter Mater Phys 2009; 79(20): 205103. doi: 10.1103/PhysRevB.79.205103
  11. Shokrollahi H. A review of the magnetic properties, synthesis methods and applications of maghemite. J Magn Magn Mater 2017; 426: 74-81. doi: 10.1016/j.jmmm.2016.11.033
  12. Bødker F, Hansen MF, Koch CB, Lefmann K, Mørup S. Magnetic properties of hematite nanoparticles. Phys Rev B Condens Matter 2000; 61(10): 6826-38. doi: 10.1103/PhysRevB.61.6826
  13. Kahil H, Faramawy A, El-Sayed H, Abdel-Sattar A. Magnetic properties and SAR for gadolinium-doped iron oxide nanoparticles prepared by hydrothermal method. Crystals (Basel) 2021; 11(10): 1153. doi: 10.3390/cryst11101153
  14. Sachdev S, Maugi R, Kirk C, Zhou Z, Christie SDR, Platt M. Synthesis and assembly of gold and iron oxide particles within an emulsion droplet; facile production of core@shell particles. Colloid Interface Sci Commun 2017; 16: 14-8. doi: 10.1016/j.colcom.2016.12.005
  15. Sinha MK, Sahu SK, Meshram P, Prasad LB, Pandey BD. Low temperature hydrothermal synthesis and characterization of iron oxide powders of diverse morphologies from spent pickle liquor. Powder Technol 2015; 276: 214-21. doi: 10.1016/j.powtec.2015.02.006
  16. Mascolo M, Pei Y, Ring T. Room temperature co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases. Materials (Basel) 2013; 6(12): 5549-67. doi: 10.3390/ma6125549 PMID: 28788408
  17. Gatelyte A, Jasaitis D, Beganskiene A, Kareiva A. Sol-gel synthesis and characterization of selected transition metal nano-ferrites. Medziagotyra 2011; 17(3): 302-7.
  18. Sahoo SK, Agarwal K, Singh AK, Polke BG, Raha KC. Characterisation of γ- and α-Fe2O3 nano powders synthesised by emulsion precipitation-calcination route and rheological behavior of α-Fe2O3. Int J Eng Sci Technol 2010; 2(8): 118-26.
  19. Jian P, Yahui H, Yang W, Linlin L. Preparation of polysulfone–Fe3O4 composite ultrafiltration membrane and its behavior in magnetic field. J Membr Sci 2006; 284(1-2): 9-16. doi: 10.1016/j.memsci.2006.07.052
  20. Hou Y, Kondoh H, Shimojo M, et al. Inorganic nanocrystal self-assembly via the inclusion interaction of β-cyclodextrins: Toward 3D spherical magnetite. J Phys Chem B 2005; 109(11): 4845-52. doi: 10.1021/jp0476646 PMID: 16863138
  21. Mondal K, Lorethova H, Hippo E, Wiltowski T, Lalvani SB. Reduction of iron oxide in carbon monoxide atmosphere—reaction controlled kinetics. Fuel Process Technol 2004; 86(1): 33-47. doi: 10.1016/j.fuproc.2003.12.009
  22. Cain JL, Harrison SR, Nikles JA, Nikles DE. Preparation of α-Fe particles by reduction of ferrous ion in lecithin/cyclohexane/water association colloids. J Magn Magn Mater 1996; 155(1-3): 67-9. doi: 10.1016/0304-8853(95)00656-7
  23. Yeap SP, Ahmad AL, Ooi BS, Lim J. Electrosteric stabilization and its role in cooperative magnetophoresis of colloidal magnetic nanoparticles. Langmuir 2012; 28(42): 14878-91. doi: 10.1021/la303169g PMID: 23025323
  24. Sarathy V, Tratnyek PG, Nurmi JT, et al. Aging of iron nanoparticles in aqueous solution: Effects on structure and reactivity. J Phys Chem C 2008; 112(7): 2286-93. doi: 10.1021/jp0777418
  25. Faraji M, Yamini Y, Rezaee M. Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications. J Indian Chem Soc 2010; 7(1): 1-37.
  26. Nadagouda MN, Castle AB, Murdock RC, Hussain SM, Varma RS. In vitro biocompatibility of nanoscale zerovalent iron particles (NZVI) synthesized using tea polyphenols. Green Chem 2010; 12(1): 114-22. doi: 10.1039/B921203P
  27. Kahil H, El-Sayed HM, ElSayed EM, Sallam AM, Talaat M, Sattar AA. Effect of in vitro magnetic fluid hyperthermia using citrate coated cobalt ferrite nanoparticles on tumor cell death. Rom J Biophys 2015; 25(3): 209-24.
  28. Dheyab MA, Aziz AA, Jameel MS, Abu Noqta O, Mehrdel B. Synthesis and coating methods of biocompatible iron oxide/gold nanoparticle and nanocomposite for biomedical applications. Zhongguo Wuli Xuekan 2019; 36: 305-25.
  29. Akl MA, Atta YM, Yousef AM, Alaa MI. Characterization of stabilized porous magnetite core–shell nanogel composites based on crosslinked acrylamide/sodium acrylate copolymers. Polym Int 2013; 62(12): 1667-77. doi: 10.1002/pi.4464
  30. Xiao L, Mertens M, Wortmann L, et al. Enhanced in vitro and in vivo cellular imaging with green tea coated water-soluble iron oxide nanocrystals. ACS Appl Mater Interfaces 2015; 7(12): 6530-40. doi: 10.1021/am508404t PMID: 25729881
  31. Huang L, Weng X, Chen Z, Megharaj M, Naidu R. Green synthesis of iron nanoparticles by various tea extracts: Comparative study of the reactivity. Spectrochim Acta A Mol Biomol Spectrosc 2014; 130: 295-301. doi: 10.1016/j.saa.2014.04.037 PMID: 24793479
  32. Loo YY, Chieng BW, Nishibuchi M, Radu S. Synthesis of silver nanoparticles by using tea leaf extract from Camellia sinensis. Int J Nanomedicine 2012; 7: 4263-7. PMID: 22904632
  33. Sharma RK, Gulati S, Mehta S. Preparation of gold nanoparticles using tea: A green chemistry experiment. J Chem Educ 2012; 89(10): 1316-8. doi: 10.1021/ed2002175
  34. Nadagouda MN, Varma RS. Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chem 2008; 10(8): 859-62. doi: 10.1039/b804703k
  35. Pardoe H, Chua-anusorn W, St. Pierre TG, Dobson J. Structural and magnetic properties of nanoscale iron oxide particles synthesized in the presence of dextran or polyvinyl alcohol. J Magn Magn Mater 2001; 225: 41-6. doi: 10.1016/S0304-8853(00)01226-9
  36. Sahoo Y, Goodarzi A, Swihart MT, et al. Aqueous ferrofluid of magnetite nanoparticles: Fluorescence labeling and magnetophoretic control. J Phys Chem B 2005; 109(9): 3879-85. doi: 10.1021/jp045402y PMID: 16851439
  37. Dheyab MA, Aziz AA, Jameel MS, Noqta OA, Khaniabadi PM, Mehrdel B. Simple rapid stabilization method through citric acid modification for magnetite nanoparticles. Sci Rep 2020; 10(1): 10793. doi: 10.1038/s41598-020-67869-8 PMID: 32612098
  38. Hilger I. In vivo applications of magnetic nanoparticle hyperthermia. Int J Hyperthermia 2013; 29(8): 828-34. doi: 10.3109/02656736.2013.832815 PMID: 24219800
  39. Wildeboer RR, Southern P, Pankhurst QA. On the reliable measurement of specific absorption rates and intrinsic loss parameters in magnetic hyperthermia materials. J Phys D Appl Phys 2014; 47(49): 495003. doi: 10.1088/0022-3727/47/49/495003
  40. Cortajarena AL, Ortega D, Ocampo SM, et al. Engineering iron oxide nanoparticles for clinical settings. Nanobiomedicine (Rij) 2014; 1: 2. doi: 10.5772/58841 PMID: 30023013
  41. Kahil H, El-Sayed HM. Assessment of AC losses in cobalt ferrite nanoparticles using a varying frequency induction heater. IOSR J Appl Phys 2015; 7(3): 37-43.
  42. Vinila VS, Isac J. Synthesis and structural studies of superconducting perovskite GdBa2Ca3Cu4O105+δ nanosystems. Design, Fabrication, and Characterization of Multifunctional Nanomaterials Micro and Nano Technologies 2022; pp. 319-41.
  43. Liu X, Kaminski MD, Guan Y, Chen H, Liu H, Rosengart AJ. Preparation and characterization of hydrophobic superparamagnetic magnetite gel. J Magn Magn Mater 2006; 306(2): 248-53. doi: 10.1016/j.jmmm.2006.03.049
  44. Grau-Crespo R, Al-Baitai AY, Saadoune I, De Leeuw NH. Vacancy ordering and electronic structure of γ - Fe2O3 (maghemite): A theoretical investigation. J Phys Condens Matter 2010; 22(25): 255401. doi: 10.1088/0953-8984/22/25/255401 PMID: 21393797
  45. Lutteroti L. 1997. Available from: https://scholar.google.com/scholar?hl=enas_sdt=0,5cluster=12917457601926802736
  46. Fiorani D, Testa AM, Lucari F, D’Orazio F, Romero H. Magnetic properties of maghemite nanoparticle systems: Surface anisotropy and interparticle interaction effects. Physica B 2002; 320(1-4): 122-6. doi: 10.1016/S0921-4526(02)00659-2
  47. Banerjee I, Pangule RC, Kane RS. Antifouling coatings: Recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater 2011; 23(6): 690-718. doi: 10.1002/adma.201001215 PMID: 20886559
  48. Barz M, Luxenhofer R, Zentel R, Vicent MJ. Overcoming the PEG-addiction: Well-defined alternatives to PEG, from structure–property relationships to better defined therapeutics. Polym Chem 2011; 2(9): 1900-18. doi: 10.1039/c0py00406e
  49. Shameli K, Bin Ahmad M, Jazayeri SD, et al. Synthesis and characterization of polyethylene glycol mediated silver nanoparticles by the green method. Int J Mol Sci 2012; 13(6): 6639-50. doi: 10.3390/ijms13066639 PMID: 22837654
  50. Wang N, Hsu C, Zhu L, Tseng S, Hsu JP. Influence of metal oxide nanoparticles concentration on their zeta potential. J Colloid Interface Sci 2013; 407: 22-8. doi: 10.1016/j.jcis.2013.05.058 PMID: 23838331
  51. Gottimukkala KSV, Harika RP, Deeveka Z. Green synthesis of iron nanoparticles using green tea leaves extract. J Nanomed Biother Discov 2017; 7: 151.
  52. Cao G, Wang Y. 2011.
  53. Shimpi JR, Sidhaye DS, Prasad BLV. Digestive ripening: A fine chemical machining process on the nanoscale. Langmuir 2017; 33(38): 9491-507. doi: 10.1021/acs.langmuir.7b00193 PMID: 28562058
  54. Sahu P, Prasad BLV. Effect of digestive ripening agent on nanoparticle size in the digestive ripening process. Chem Phys Lett 2012; 525-526: 101-4. doi: 10.1016/j.cplett.2011.12.078
  55. Lee D, Park S, Lee J, Hwang N. A theoretical model for digestive ripening. Acta Mater 2007; 55(15): 5281-8. doi: 10.1016/j.actamat.2007.05.048
  56. Sahu P, Prasad BLV. Time and temperature effects on the digestive ripening of gold nanoparticles: Is there a crossover from digestive ripening to Ostwald ripening? Langmuir 2014; 30(34): 10143-50. doi: 10.1021/la500914j PMID: 25111614
  57. Baumgartner J, Dey A, Bomans PHH, et al. Nucleation and growth of magnetite from solution. Nat Mater 2013; 12(4): 310-4. doi: 10.1038/nmat3558 PMID: 23377292
  58. Manzanares JA, Peljo P, Girault HH. Understanding digestive ripening of ligand-stabilized, charged metal nanoparticles. J Phys Chem C 2017; 121(24): 13405-11. doi: 10.1021/acs.jpcc.7b04234
  59. Lambert JD, Elias RJ. The antioxidant and pro-oxidant activities of green tea polyphenols: A role in cancer prevention. Arch Biochem Biophys 2010; 501(1): 65-72. doi: 10.1016/j.abb.2010.06.013 PMID: 20558130
  60. Givord D. Magnetism in nanomaterialsNanomaterials and Nanochemistry. Berlin, Heidelberg: Springer 2008.
  61. El-Sayed HM, Ali IA, Azzam A, Sattar AA. Influence of the magnetic dead layer thickness of Mg-Zn ferrites nanoparticle on their magnetic properties. J Magn Magn Mater 2017; 424: 226-32. doi: 10.1016/j.jmmm.2016.10.049
  62. Daoush WM. Co-precipitation and magnetic properties of magnetite nanoparticles for potential biomedical applications. J Nanomed Res 2017; 5(3): 00118. doi: 10.15406/jnmr.2017.05.00118
  63. Mathew DS, Juang R-S. An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem Eng J 2007; 129(1-3): 51-65. doi: 10.1016/j.cej.2006.11.001
  64. Salazar-Alvarez G, Qin J, Šepelák V, et al. Cubic versus spherical magnetic nanoparticles: The role of surface anisotropy. J Am Chem Soc 2008; 130(40): 13234-9. doi: 10.1021/ja0768744 PMID: 18783216
  65. Globus A, Duplex P, Guyot M. Determination of initial magnetization curve from crystallites size and effective anisotropy field. IEEE Trans Magn 1971; 7(3): 617-22. doi: 10.1109/TMAG.1971.1067200
  66. Jun Y, Seo J, Cheon J. Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Acc Chem Res 2008; 41(2): 179-89. doi: 10.1021/ar700121f PMID: 18281944
  67. Zeng Q, Baker I, McCreary V, Yan Z. Soft ferromagnetism in nanostructured mechanical alloying FeCo-based powders. J Magnet Magnetic Mater 2007; 318(1-2): 28-38. doi: 10.1016/j.jmmm.2007.04.037
  68. Zhu Y, Zhao W, Chen H, Shi J. A simple one-pot self-assembly route to nanoporous and monodispersed Fe3O4 particles with oriented attachment structure and magnetic property. J Phys Chem C 2007; 111(14): 5281-5. doi: 10.1021/jp0676843
  69. Vallejo-Fernandez G, Whear O, Roca AG, et al. Mechanisms of hyperthermia in magnetic nanoparticles. J Phys D Appl Phys 2013; 46(31): 312001. doi: 10.1088/0022-3727/46/31/312001
  70. Lu AH, Salabas EL, Schüth F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew Chem Int Ed 2007; 46(8): 1222-44. doi: 10.1002/anie.200602866 PMID: 17278160
  71. Kalita VM, Tovstolytkin AI, Ryabchenko SM, Yelenich OV, Solopan SO, Belous AG. Mechanisms of AC losses in magnetic fluids based on substituted manganites. Phys Chem Chem Phys 2015; 17(27): 18087-97. doi: 10.1039/C5CP02822A PMID: 26100102

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024