Синтез и фазовое поведение нового кремнийорганического полимера с фрагментами [1]бензотиено[3,2-b][1]бензотиофена в основной цепи

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Описан синтез нового карбосилан-силоксанового полимера [Si‒O‒Si‒С11‒BTBT‒С11]n с фрагментами [1]бензотиено[3,2-b][1]бензотиофена (ВТВТ) в основной цепи. Синтез мономеров осуществлен путем последовательного введения функциональных алкильных заместителей в ядро BTBT с использованием реакции Фриделя‒Крафтса с последующим восстановлением кето-группы. Целевой полимер получен по реакции гидросилилирования между 2,7-бис-(10-ундецен-1-ил)-BTBT и 2,7-бис-(11-(1,1,3,3-тетраметилдисилоксан)-ундецил)-BTBT. Все новые соединения получены с высокой чистотой, что подтверждено методами спектроскопии ЯМР 1Н и ЯМР 13С, гель-проникающей хроматографии и элементного анализа. Структура и фазовое поведение синтезированного полимера исследованы методами дифференциальной сканирующей калориметрии, поляризационной оптической микроскопии и рентгеноструктурного анализа, а также определены тип упорядочения вещества и природа фазовых переходов в цикле нагревания и охлаждения.

Полный текст

Доступ закрыт

Об авторах

И. О. Гудкова

Институт синтетических полимерных материалов им. Н.С. Ениколопова Российской академии наук

Автор, ответственный за переписку.
Email: i.gudkova@ispm.ru
Россия, 117393 Москва, ул. Профсоюзная, 70

Е. А. Заборин

Институт синтетических полимерных материалов им. Н.С. Ениколопова Российской академии наук

Email: i.gudkova@ispm.ru
Россия, 117393 Москва, ул. Профсоюзная, 70

О. В. Борщев

Институт синтетических полимерных материалов им. Н.С. Ениколопова Российской академии наук

Email: i.gudkova@ispm.ru
Россия, 117393 Москва, ул. Профсоюзная, 70

А. В. Бакиров

Институт синтетических полимерных материалов им. Н.С. Ениколопова Российской академии наук; Национальный исследовательский центр “Курчатовский институт”

Email: i.gudkova@ispm.ru
Россия, 117393 Москва, ул. Профсоюзная, 70; 123182 Москва, пл. Академика Курчатова, 1

С. Н. Чвалун

Институт синтетических полимерных материалов им. Н.С. Ениколопова Российской академии наук; Национальный исследовательский центр “Курчатовский институт”

Email: i.gudkova@ispm.ru
Россия, 117393 Москва, ул. Профсоюзная, 70; 123182 Москва, пл. Академика Курчатова, 1

С. А. Пономаренко

Институт синтетических полимерных материалов им. Н.С. Ениколопова Российской академии наук

Email: i.gudkova@ispm.ru
Россия, 117393 Москва, ул. Профсоюзная, 70

Список литературы

  1. Bronstein H., Nielsen C.B., Schroeder B.C., McCulloch I. // Nat. Rev. Chem. 2020. V. 4. P. 66.
  2. Wong M.Y., Zysman-Colman E. // Adv. Mater. 2017. V. 29. P. 1605444.
  3. Ma S., Zhang H., Feng K., Guo X. // Chem. Eur. J. 2022. V. 28. P. e202200222.
  4. Mei J., Diao Y., Appleton A. L., Fang L., Bao Z. // J. Am. Chem. Soc. 2013. V. 135. P. 6724.
  5. Wang Y., Zhang J., Zhang S., Huang J. // Polym. Int. 2021. V. 70. P. 414.
  6. Шапошник П.А., Запуниди С.А., Шестаков М.В., Агина Е.В., Пономаренко С.А. // Успехи химии. 2020. Т. 89. № 12. С. 1483.
  7. Can A., Facchetti A., Usta H. // J. Mater. Chem. C. 2022. V. 10. P. 8496.
  8. Andringa A.-M., Spijkman M.-J., Smits E.C.P., Mathijssen S.G.J., van Hal P.A., Setayesh S., Willard N.P., Borshchev O.V., Ponomarenko S.A., Blom P.W.M., de Leeuw D.M. // Org. Electron. 2010. V. 11. P. 895.
  9. Wang J., Jiang C. // Org. Electron. 2015. V. 16. P. 164.
  10. Cao Y., Steigerwald M.L., Nuckolls C., Guo X. // Adv. Matter. 2009. V. 22. P. 20.
  11. Saengchairat N., Tran T., Chua C.-K. // Virtual Phys. Prototyp. 2016. V. 12. P. 1.
  12. Lim J.A., Lee W.H., Lee H.S., Lee J.H., Park Y.D., Cho K. // Adv. Funct. Mater. 2008. V. 18. P. 229.
  13. Basaran O.A., Gao H.J., Bhat P.P. // Annu. Rev. Fluid Mech. 2013. V. 45. P. 85.
  14. Li L., Lin Q., Tang M., Duncan A.J. E., Ke C. // Chem. Eur. J. 2019. V. 25. P. 10768.
  15. Yuan Y., Giri G., Ayzner A.L., Zoombelt A.P., Mannsfeld S.C.B., Chen J., Nordlund D., Toney M.F., Huang J., Bao Z. // Nat. Commun. 2014. V. 5. P. 3005.
  16. Paterson A.F., Treat N.D., Zhang W., Fei Z., Wyatt-Moon G., Faber H., Vourlias G., Patsalas P.A., Solo meshch O., Tessler N., Heeney M., Anthopoulos T.D. // Adv. Mater. 2016. V. 28. P. 7791.
  17. Paterson A.F., Lin Y.-H., Mottram A.D., Fei Z., Niazi M.R., Kirmani A.R., Amassian A., Solomeshch O., Tessler N., Heeney M., Anthopoulos T.D. // Adv. Electron. Mater. 2018. V. 4. P. 1700464.
  18. Borshchev O.V., Sizov A.S., Agina E.V., Bessonov A.A., Ponomarenko S.A. // Chem. Commun. 2017. V. 53. P. 885.
  19. Trul A.A., Sizov A.S., Chekusova V.P., Borshchev O.V., Agina E.V., Shcherbina M.A., Bakirov A.V., Chva lun S.N., Ponomarenko S.A. // J. Mater. Chem. C. 2018. V. 6. P. 9649.
  20. Takimiya K., Yamamoto T., Ebata H., Izawa T. // Thin Solid Films. 2014. V. 554. P. 13.
  21. Takimiya K., Osaka I., Mori T., Nakano M. // Acc. Chem. Res. 2014. V. 47. P. 1493.
  22. Saito M., Osaka I., Miyazaki E., Takimiya K., Kuwa bara H., Ikeda M. // Tetrahedron Lett. 2011. V. 52. № 2. P. 285.
  23. Polinskaya M.S., Trul A.A., Borshchev O.V., Skorotetcky M.S., Gaidarzhi V.P., Toirov S.K., Anisimov D.S., Bakirov A.V., Chvalun S.N., Agina E.V., Ponomarenko S.A. // J. Mater. Chem. C. 2023. V. 11. P. 1937.
  24. Гудкова И.О., Сорокина Е.А., Заборин Е.А., Полинская М.С., Борщев О.В., Пономаренко С.А. // Журн. орг. хим. 2024 (в печати).
  25. Guan Y.-S., Qiao J., Liang Y., Bisoyi H.K., Wang C., Xu W., Zhu D., Li Q. // Light Sci. Appl. 2022. V. 11. P. 236.
  26. Bisoyi H.K., Li Q. // Chem. Rev. 2022. V. 122. P. 4887.
  27. Cholakova D., Denkov N. // Adv. Coll. Int. Sci. 2019. V. 269. P. 7.
  28. Saito K., Miyazawa T., Fujiwara A., Hishida M., Saitoh H., Massalska-Arodź M., Yamamura Y. // J. Chem. Phys. 2013. V. 139. P. 114902.
  29. Jasiurkowska M., Budziak A., Massalska‐Arodź C.M., Urban S. // Liquid Cryst. 2008. V. 35. P. 513.
  30. Ebata H., Izawa T., Miyazaki E., Takimiya K., Ikeda M., Kuwabara H., Yui T. // J. Am. Chem. Soc. 2007. V. 129. P. 15732.
  31. Zaborin E.A., Borshchev O.V., Skorotetskii M.S., Goro dov V.V., Bakirov A.V., Polinskaya M.S., Chvalun S.N., Ponomarenko S.A. // Polymer Science B. 2022. V. 64. № 6. P. 841.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Схема 1.

Скачать (117KB)
3. Схема 2.

Скачать (192KB)
4. Схема 3.

Скачать (97KB)
5. Рис. 1. Спектры ЯМР 1H сравнения полученных соединений 6, 7 и мономеров 1, 2. Цветные рисунки можно посмотреть в электронной версии.

Скачать (153KB)
6. Рис. 2. Хроматограммы ГПХ сравнения реакционной смеси (1) и высокомолекулярной фракции полимера [Si‒O‒Si‒С11-BTBT-С11]n (2).

Скачать (126KB)
7. Рис. 3. Спектры ЯМР 1H (а) и ЯМР 13С (б) полимера [Si‒O‒Si‒С11-BTBT-С11]n. Сигналы приближены для наглядности.

Скачать (246KB)
8. Рис. 4. Результаты термогравиметрического анализа полимера [Si‒O‒Si‒С11-BTBT-С11]n в атмосфере аргона (а) и в атмосфере воздуха (б).

Скачать (96KB)
9. Рис. 5. Характеристики полимера [Si‒O‒Si‒С11-BTBT-С11]n: (а) ‒ термограммы ДСК нагревания (1), охлаждения (2) и повторного нагревания (3); (б), (в) ‒ микрофотографии в скрещенных поляроидах при 25° и 90°С соответственно.

Скачать (233KB)
10. Рис. 6. Результаты рентгеноструктурного исследования полимера [Si‒O‒Si‒С11-BTBT-С11]n: (а) ‒ кривые мало- и широкоуглового рентгеновского рассеяния при разных значениях температуры: нагревание от комнатной температуры до 120°С и последующего охлаждения (кривые сдвинуты по вертикали); (б) ‒ молекулярная модель мономера Si‒O‒Si‒C11-BTBT-C11 в полностью выпрямленной конформации (отмечена полная длина); (в) ‒ зависимость межплоскостного расстояния от температуры: 1 и 2 ‒ кристаллическое и ЖК-нагревание, 2 и 4 ‒ кристаллическое и ЖК-охлаждение соответственно.

Скачать (169KB)

© Российская академия наук, 2024