Diblock Copolymer Melt in an Electric Field: Stability of the Homogeneous State in the Random Phase Approximation
- Authors: Kriksin Y.A.1,2, Kudryavtsev Y.V.2,3
-
Affiliations:
- Keldysh Institute of Applied Mathematics, Russian Academy of Sciences
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
- Issue: Vol 65, No 1 (2023)
- Pages: 59-66
- Section: Articles
- URL: https://kazanmedjournal.ru/2308-1147/article/view/674807
- DOI: https://doi.org/10.31857/S2308114723700267
- EDN: https://elibrary.ru/HRPLXG
- ID: 674807
Cite item
Abstract
The contribution of I.Ya. Erukhimovich (1947–2022) to the creation of the theory of microphase separation in di- and triblock copolymers has been briefly analyzed. His matrix method of calculating correlation functions for multicomponent polymer systems has been applied to find the spinodal of a diblock copolymer melt in a static electric field. It has been strictly shown that for a linear dependence of local dielectric constant of the copolymer on the order parameter the spinodal condition remains the same as in the absence of the electric field. The correction to the critical value of the Flory‒Huggins parameter has been calculated for more general case of the quadratic dependence.
About the authors
Yu. A. Kriksin
Keldysh Institute of Applied Mathematics, Russian Academy of Sciences; Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Email: ykriksin@gmail.com
125047, Moscow, Russia; 119991, Moscow, Russia
Ya. V, Kudryavtsev
Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences; Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Author for correspondence.
Email: ykriksin@gmail.com
119991, Moscow, Russia; 119071, Moscow, Russia
References
- Abetz V., Simon P.F.W. // Advances in Polymer Science / Ed. by V. Abetz. Berlin: Heidelberg: Springer, 2005. V. 189.
- Bates C.M., Bates F.S. // Macromolecules. 2017. V. 50. № 1. P. 3.
- Lazzari M., Torneiro M. // Polymers. 2020. V. 12. № 4. Art. 869.
- Cummins C., Lundy R., Walsh J.J., Ponsinet V., Fleury G., Morris M.A. // Nano Today. 2020. V. 35. Art. 100936.
- Chen Y., Xiong S.S. // Int. J. Extreme Manuf. 2020. V. 2. № 3. Art. 032006.
- Yang K.-C., Puneet P., Chiu P.-T., Ho R.-M. // Acc. Chem. Res. 2022. V. 55. № 15. P. 2033.
- Zou Y.D., Zhou X.R., Ma J.H., Yang X.Y., Deng Y.H. // Chem Soc. Rev. 2020. V. 49. № 4. P. 1173.
- Li C., Li Q., Kaneti Y.V., Hou D., Yamauchi Y., Mai Y.Y. // Chem. Soc. Rev. 2020. V. 49. № 14. P. 4681.
- Min J., Barpuzary D., Ham H., Kang G.-C., Park M.J. // Acc. Chem. Res. 2022. V. 54. № 21. P. 4024.
- Kang S., Kim G.-H., Park S.-J. // Acc. Chem. Res. 2022. V. 55. № 16. P. 2224.
- Ma S.H., Hou Y.S., Hao J.L., Lin C.C., Zhao J.W., Sui X. // Polymers. 2022. V. 14. № 21. Art. 4568.
- Liu S.M., Yang Y., Zhang L.B., Xu J.P., Zhu J.T. // J. Mater. Chem. C. 2020. V. 8. № 47. P. 16633.
- Radjabian M., Abetz V. // Prog. Polym. Sci. 2020. V. 102. Art. 101219.
- Theory and Simulation // Polymer Science A. 2009. V. 50. № 1. P. 49.
- Yerukhimovich I.Ya. // Polym. Sci. U.S.S.R. 1979. V. 21. № 2. P. 470.
- Lifshitz I.M. // Sov. Phys. JETP. 1969. V. 28. № 6. P. 2408.
- Yerukhimovich I.Ya. // Polym. Sci. U.S.S.R. 1982. V. 24. № 9. P. 2223, 2232.
- Dobrynin A.V., Yerukhimovich I.Ya. // Vysokomol. Soed. B. 1991. V. 32. № 9. P. 663; № 10. P. 743; № 11. P. 852.
- Dobrynin A.V., Yerukhimovich I.Ya. // Polym. Sci. U.S.S.R. 1991. V. 33. № 5. P. 1012.
- Dobrynin A.V., Erukhimovich I.Ya. // Macromolecules. 1993. V. 26. № 2. P. 276.
- Erukhimovich I.Ya., Smirnova Yu.G., Abetz V. // Polymer Science A. 2003. V. 45. № 11. P. 1093.
- Tarasenko S.A., Erukhimovich I.Ya. // Polymer Science A 2005. V. 47. № 3. P. 299.
- Erukhimovich I.Ya. // Eur. Phys. J. E. 2005. V. 18. № 4. P. 383.
- Erukhimovich I.Ya., Semenov A.N. // Sov. Phys. JETP. 1986. V. 63 № 1. P. 149.
- Erukhimovich I.Ya., Kudryavtsev Y.V. // Eur. Phys. J. E. 2003. V. 11. № 4. P. 349.
- Qin J., Bates F.S., Morse D.C. // Macromolecules. 2010. V. 43. P. 5128.
- Erukhimovich I., Kriksin Y.A., ten Brinke G. // Macromolecules. 2015. V. 48. № 21. P. 7909.
- Erukhimovich I., Kriksin Y.A., ten Brinke G. // Macromolecules. 2017. V. 50. 3922.
- Leibler L. // Macromolecules. 1980. V. 13. № 6. P. 1602.
- de Gennes P.-G. // J. Phys. (Paris). 1970. V. 31. P. 235.
- Flory P. Principles of Polymer Chemistry. Ithaca, New York: Cornell Univ. Press, 1953. Ch. 13.
- Lodge T.P. // Macromolecules. 2020. V 53. № 1. P. 2.
- Fredrickson G.H. // The Equilibrium Theory of Inhomogeneous Polymers. New York: Oxford Univ. Press, 2006.
- Kriksin Y.A., Erukhimovich I.Ya., Khalatur P.G., Smirnova Y.G., ten Brinke G. // J. Chem. Phys. 2008. V. 128. № 244903.
- Matsen M.W., Schick M. // Phys. Rev. Lett. 1994. V. 72. № 16. P. 2660.
- Erukhimovich I.Ya., Kriksin Yu.A., Kudryavtsev Y.V. // Polymer Science A. 2022. V. 64. № 2. P. 121.
- Merekalov A.S., Derikov Y.I., Ezhov A.A., Kriksin Yu.A., Erukhimovich I.Ya., Kudryavtsev Y.V. // Polymer. 2023, V. 264. Art. 125544.
- Amundson K., Helfand E., Patel S.S., Quan X., Smith S.D. // Macromolecules. 1992. V. 25. № 7. P. 1935.
- Amundson K., Helfand E., Quan X., Smith S.D. // Macromolecules. 1993. V. 26. № 11. P. 2698.
- Gurovich E. // Macromolecules. 1994. V. 27. № 25. P. 7339.
- Kolesnikov A.L., Budkov Yu.A., Basharova E.A., Kiselev M.G. // Soft Matter. 2017. V. 13. № 24. P. 4363.
- Wu J., Wang X., Ji Y., Hea L., Li S. // Phys. Chem. Chem. Phys. 2016. V. 18. № 15. P. 10309.
- Gunkel I., Stepanow S., Thurn-Albrecht T., Trimper S. // Macromolecules. 2007. V. 40. № 6. P. 2186.
- Schoberth H.G., Pester C.W., Ruppel M., Urban V.S., Böker A. // ACS Macro Lett. 2013. V. 2. № 6. P. 469.
- Orzechowski K., Adamczyk M., Wolny A., Tsori Y. // J. Phys. Chem. B 2014. V. 118. № 25. P. 7187.
- Kathrein C.C., Kipnusu W.K., Kremer F., Böker A. // Macromolecules. 2015. V. 48. № 10. P. 3354.
- Tsori Y. // Rev. Mod. Phys. 2009. V. 81. № 4. P. 1471.
Supplementary files
