Influence of ion-plasma fibers treatment and silica nanoparticles on porous structure of Polikon anion-exchange membranes

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The physicochemical properties and characteristics of the porous structure of “Polikon A” composite anion-exchange membranes, obtained by the method of polycondensation filling of polyester fiber, are studied. It is established that the total porosity, the specific surface area and specific moisture capacity of “Polikon A” composite membranes are comparable with these characteristics for the “Polikon K” membranes and are significantly higher than for the heterogeneous ion-exchange MA-40 membrane. It is found that the method of preparing silica nanoparticles, as well as preliminary ion-plasma treatment of fibers, significantly influence on the porous structure of the Polikon A membranes based on lavsan.

Texto integral

Acesso é fechado

Sobre autores

D. Terin

Yuri Gagarin State Technical University of Saratov; Saratov State University

Email: shkirskaya@mail.ru
Rússia, Politekhnicheskaya st., 77, Saratov, 410054; Astrakhanskaya st., 83, Saratov, 410012

М. Kardash

Yuri Gagarin State Technical University of Saratov

Email: shkirskaya@mail.ru
Rússia, Politekhnicheskaya st., 77, Saratov, 410054

N. Kononenko

Kuban State University

Email: shkirskaya@mail.ru
Rússia, Stavropolskaya st., 149, Krasnodar, 350040

S. Shkirskaya

Kuban State University

Autor responsável pela correspondência
Email: shkirskaya@mail.ru
Rússia, Stavropolskaya st., 149, Krasnodar, 350040

Yu. Volfkovich

Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences

Email: shkirskaya@mail.ru
Rússia, Leninsky Prospekt, 31, building 4, Moscow, 119071

V. Sosenkin

Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences

Email: shkirskaya@mail.ru
Rússia, Leninsky Prospekt, 31, building 4, Moscow, 119071

Bibliografia

  1. Strathmann H. // Desalination. 2010. V. 264. № 3. P. 268.
  2. Valero F., Arbós R. // Desalination. 2010. V. 253. № 1–3. P. 170.
  3. Ge L., Wu B., Yu D., Mondal A.N., Hou L., Afsar N.U., Li Q., Xu T., Miao J., Xu T. // Chinese J. Chem. Eng. 2017. V. 25. № 11. P. 1606.
  4. Gurreri L., Tamburini A., Cipollina A., Micale G. // Membranes (Basel). 2020. V. 10. № 7. P. 146.
  5. Al-Amshawee S., Yunus M.Y.B.M., Azoddein A.A.M., Hassell D.G., Dakhil I.H., Hasan H.A. // Chem. Eng. J. 2020. Vol. 380. P. 122231.
  6. Campione A., Gurreri L., Ciofalo M., Micale G., Tamburini A., Cipollina A. // Desalination. 2018. V. 434. P. 121.
  7. Meng J., Shi Х., Wang S., Hu Z., Koseoglu-Imer D.Y., Lens P.N.L., Zhan X. // J. Water Process Engineering. 2024. V. 65. P. 105855.
  8. Merkel A., Vavro M., Čopák L., Dvořák L., Ahrné L., Ruchti C. // Membranes. 2022. V. 13. P. 29.
  9. Faucher M., Serre É., Langevin M.-È., Mikhaylin S., Lutin F., Bazinet L. // J. Memb. Sci. 2018. V. 555. P. 105.
  10. Geoffroy T.R., Bernier M.E., Thibodeau J., Francezon N., Beaulieu L., Mikhaylin S., Langevin M.E., Lutin F., Bazinet L. // J. Memb. Sci. 2022. V. 641. P. 119856.
  11. Мембраны и мембранные технологии / Отв. ред. А.Б. Ярославцев. М.: Научный мир, 2013. 612 с.
  12. Sata T. Ion Exchange Membranes: Preparation, Characterization, Modification and Application. The Royal Society of Chemistry, Gateshead, 2004. 314 p.
  13. Apel P.Yu., Bobreshova O.V., Volkov A.V., Volkov V.V., Nikonenko V.V., Stenina I.A., Filippov A.N., Yampolskii Yu.P., Yaroslavtsev A.B. // Membranes and Membrane Technologies. 2019. V. 1. № 2. P. 45.
  14. Meng J., Shi L., Hu Y., Wang Z., Hu Z., Zhan X. // Bioresour. Technol. 2024. V. 402. P. 130770.
  15. Апель П.Ю., Велизаров С., Волков А.В., Елисеева Т.В., Никоненко В.В., Паршина А.В., Письменская Н.Д., Попов К.И., Ярославцев А.Б. // Мембраны и мембранные технологии. 2022. Т. 12. № 2. С. 81.
  16. Bokhary A., Tikka A., Leitch M., Liao B. // J. Membr. Sci. Res. 2018. V. 4. P. 181.
  17. Apel P.Yu., Biesheuvel P.M., Bobreshova O.V., Borisov I.L., Vasil’eva V.I., Volkov V.V., Grushevenko E.A., Nikonenko V.V., Parshina A.V., Pismenskaya N.D., Ryzhkov I.I., Sharafan M.V., Yaroslavtsev A.B. // Membranes and Membrane Technologies. 2024. V. 6. № 3. P. 133.
  18. Кардаш М.М., Терин Д.В. // Мембраны и мембранные технологии. 2016. Т. 6. № 2. С. 152.
  19. Кардаш М.М., Кононенко Н.А., Фоменко М.А., Тюрин И.А., Айнетдинов Д.В. // Мембраны и мембранные технологии. 2016. Т. 6. № 1. С. 41.
  20. Tyurin I.A., Kardash M.M., Terin D.V. // Sci. Research and Innovation. 2020. № 1. P. 31.
  21. Rouquerol J., Baron G., Denoyel R., et al. // Pure and Applied Chem. 2012. V. 84. № 1. P. 107.
  22. Kononenko N., Nikonenko V., Grande D., Larchet C., Dammak L., Fomenko M., Volfkovich Yu. // Adv. Colloid and Interface Sci. 2017. V. 246. P. 196.
  23. Кардаш М.М., Вольфкович Ю.М., Тюрин И.А., Кононенко Н.А., Олейник Д.В., Черняева М.А. // Мембраны и мембранные технологии. 2013. Т. 3. № 1. С. 50.
  24. Демина О.А., Березина Н.П., Сата Т., Демин А.В. // Электрохимия. 2002. Т. 38. № 8. С. 1002.
  25. Kardash M.M., Terin D.V., Druzhinina T.V. // Fibre Chemistry. 2019. V. 51. № 4. P. 227.
  26. Кардаш М.М., Тураев Т.А., Тюрин И.А., Терин Д.В. // Химические волокна. 2024. № 4. С. 21.
  27. Terin D., Kardash M., Ainetdinov D., Turaev T., Sinev I. // Membranes. 2023. V. 13. № 8. P. 742.
  28. Купцов А.Х., Жижин Г.Н. Фурье-спектры комбинационного рассеяния и инфракрасного поглощения полимеров. М.: Физматлит, 2001. 656 с.
  29. Swierenga H., de Weijer A.P., Buydens L.M.C. // Jour. Chemometrics. 1999. V. 13. № 3–4. P. 237.
  30. Zhu C., Tong N., Song L., Zhang G. // Int. Symposium on Photonics and Optoelectronics. 2015. P. 96560E (1–5).
  31. Ellis G., Román F., Marco C., Gómez M., Fatou J. // Spectrochimica Acta Part A. 1995. V. 51. P. 2139.
  32. Strilets I.D., Kardash M.M., Terin D.V., Druzhinina T.V., Tsyplyayev S.V. // Membranes and Membrane Technologies. 2020. V. 2. № 5. P. 325.
  33. Grabowski A., Zhang G., Strathmann H., Eigenberger G. // Sep. Purif. Technol. 2008. V. 60. P. 86.
  34. Jordan M.L., Valentino L., Nazyrynbekova N., Palakkal V.M., Kole S., Bhattacharya D., Lin Y.J., Arges C.G. // Mol. Syst. Des. Eng. 2020. V. 5. P. 922.
  35. Park S., Kwak R. // Water Res. 2020. V. 170. P. 115310.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Integral (a, b) and differential (c, d) curves of water distribution by binding energies and effective pore radii in “Polycon A” membranes. The curve numbers in the figure correspond to the serial number of the sample in Table 1.

Baixar (400KB)
3. Fig. 2. Integral (a) and differential (b) curves of the distribution of the surface of meso- and macropores by pore radii in “Polycon A” membranes. The curve numbers in the figure correspond to the serial number of the sample in Table 1.

Baixar (189KB)
4. Fig. 3. Raman spectrum of polyester fibers of the “Lavsan” fabric before and after ion-plasma treatment.

Baixar (99KB)
5. Fig. 4. Specific electrical conductivity of the “Polycon A” and MA-40 membranes in 0.1 M NaCl solution. The column numbers in the figure correspond to the serial number of the sample in Table 1.

Baixar (217KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025