Enthalpy of Interaction of Lithiated Nafion Membrane with Aqueous Solutions of Alcohols and Polar Aprotic Solvents

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The swelling degree of the lithiated form of the polyperfluorosulfone membrane Nafion (Li-Nafion) in alcohols (ethanol, 2-propanol), water-alcohol mixtures and in highly polar aprotic solvents (N, N-dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP)), as well as the thermodynamics of the interaction of the membrane with solvents were studied by the microcalorimetry method. It was shown that the values of the equilibrium swelling degree of the membrane correlate with the donor number of the solvent, as well as with the values of the enthalpy of swelling of the polymer. The swelling enthalpy of the Li-Nafion membrane in the solvents takes negative values, which indicates solvation of the polymer. The concentration dependences of the enthalpy of swelling and mixing of Li-Nafion in DMF and NMP were studied in more detail. Negative values of the swelling enthalpy of the polymer over the entire concentration range of solvents indicate good thermodynamic compatibility of the membrane with the solvent and the advantage of using these solvents to obtain Nafion dispersions due to their high solvating effect.

全文:

受限制的访问

作者简介

S. Chernyuk

Ural Federal University; Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: univerekb@mail.ru
俄罗斯联邦, Ekaterinburg, 19, Mir St., 620020; Ekaterinburg, 91, Pervomayskaya St., 620049

A. Safronov

Ural Federal University; Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences

Email: univerekb@mail.ru
俄罗斯联邦, Ekaterinburg, 19, Mir St., 620020; Ekaterinburg, 106, Amundsen St., 620016

O. Bushkova

Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences

Email: univerekb@mail.ru
俄罗斯联邦, Ekaterinburg, 91, Pervomayskaya St., 620049

参考

  1. Pivovar B.S. // Polymer. 2006. V. 47. № 11. P. 4194.
  2. Kim Y.S., Lee K.S. // Polym. Rev. 2015. V. 55. № 2. P. 330.
  3. Mathias M.F., Makharia R., Gasteiger H.A., et al. // Electrochem. Soc. Interface. 2005. V. 14. № 3. P. 24.
  4. Ng W.W., Thiam H.S., Pang Y.L., Chong K.C., Lai S.O. // Membranes. 2022. V. 12. № 5. P. 506.
  5. Tucker M.C., Cho K.T., Spingler F.B., Weber A.Z., Lin G.Y. // J. Power Sources. 2015. V. 284. P. 212.
  6. Weber A.Z., Mench M.M., Meyers J.P., Ross P.N., Gostick J.T., Liu Q.H. // J. Appl. Electrochem. 2011. V. 41. № 10. P.1137.
  7. Perry M. L., Weber A.Z. // J. Electrochem. Soc. 2016. V. 163. № 1. P. 5064.
  8. Chan C.K., Lai C.Y., Wang C.C. // Catalysts. 2021. V. 11. № 8. P. 877.
  9. Harmer M.A., Sun Q. // Applied Catalysis A: General. 2001. V. 221. № 1-2. P. 45.
  10. Xie T. // Nature. 2010. V. 464. № 7286. P.267.
  11. Zhang F., Zhang Z., Liu Y., Leng J. // Fibers and Polymers. 2014. V. 15. P.534.
  12. Guo J.H., Sun W.Y. // Applied Catalysis B: Environmental. 2020. V. 275. P. 119154.
  13. Millet P. Handbook of Membrane Reactors. Woodhead Publishing, 2013. pp. 384-415.
  14. Mohammadi F., Rabiee A. // J. Appl. Polym. Sci. 2011. V. 120. № 6. P. 3469.
  15. Carvela M., Lobato J., Rodrigo M.A. // Electrochim. Acta. 2021. V. 387. P. 138542.
  16. Kayumov R.R., Shmygleva L.V., Evshchik E.Y., Sanginov E.A., Popov N.A., Bushkova, O.V., Dobrovolsky Y.A. // Russ. J. Electrochem. 2021. V. 57. P. 911.
  17. Istomina A.S., Yaroslavtseva T.V., Reznitskikh O.G., Kayumov R.R., Shmygleva L.V., Sanginov E.A., Bushkova O.V. // Polymers. 2021. V. 13. № 7. P. 1150.
  18. Oh K., Kwon O., Son B., Lee D.H., Shanmugam S. // J. Membr. Sc. 2019. V. 583. P.103.
  19. Adjemian K.T., Srinivasan S., Benziger J., Bocarsly A.B. // J. Power Sources. 2002. V. 109. № 2. P. 356.
  20. Santiago E.I., Isidoro R.A., Dresch M.A., Matos B.R., Linardi M., Fonseca F.C. // Electrochim. Acta. 2009. V. 54. № 16. P. 4111.
  21. Choi J., Yeon J.H., Yook S.H., Shin S., Kim J.Y., Choi M., Jang S. // ACS Appl. Mater. Interfaces. 2021. V. 13. № 1. P. 806.
  22. Sasikumar G., Ihm J.W., Ryu H. // Electrochim. Acta. 2004. V. 50. № 2-3. P. 601.
  23. Evshchik E.Y., Sanginov E.A., Kayumov R.R., Zhuravlev V.D., Bushkova O.V., Dobrovolsky Y.A. // Int. J. Electrochem. Sci. 2020. V. 15. № 3. P. 2216.
  24. Wang H., Qin N., Li Y., Li Z., Zhang F., Luo W., Cheng H. // Carbon. 2023. V. 205. P. 435.
  25. Walle K.Z., Wu Y.S., Wu S.H., Chang J.K., Jose R., Yang C.C. // ACS Appl. Mater. Interfaces. 2022. V. 14. № 13. P. 15259.
  26. Garsuch R.R., Le D.B., Garsuch A., Li J., Wang S., Farooq A., Dahn J.R. // J. Electrochem. Soc. 2008. V. 155. № 10. P. 721.
  27. Xu J., Zhang Q., Cheng Y.T. // J. Electrochem. Soc. 2015. V. 163. № 3. P. 401.
  28. Li Z., Zhang Y., Liu T., Gao X., Li S., Ling M., Lin Z. // Adv. Energy Mater. 2020. V. 10. № 20. P. 1903110.
  29. Tang Q., Shan Z., Wang L., Qin X., Zhu K., Tian J., Liu X. // J. Power Sources. 2014. V. 246. P. 253.
  30. Gao J., Sun C., Xu L., Chen J., Wang C., Guo D., Chen H. // J. Power Sources. 2018. V. 382. P.179.
  31. Li G., Cai W., Liu B., Li Z. // Journal of Power Sources. 2015. V. 294. P. 187.
  32. Li Z., Hou L.P., Zhang X.Q., Li B.Q., Huang J.Q., Chen C.M., Zhang Q. // Battery Energy. 2022. V. 1. № 3. P. 20220006.
  33. Huang B., Hua H., Lai P., Shen X., Li R., He Z., Zhao J. // ChemElectroChem. 2022. V. 9. № 14. P. e202200416.
  34. Berlinger S.A., Dudenas P.J., Bird A., Chen X., Freychet G., McCloskey B.D., Weber A. Z. // ACS Appl. Polym. Mater. 2020. V. 2. № 12. P. 5824.
  35. Welch C., Labouriau A., Hjelm R., Orler B., Johnston C., Kim Y.S. // ACS Macro Letters. 2012. V. 1. № 12. P. 1403.
  36. Safronova E.Y., Voropaeva D.Y., Safronov D.V., Stretton N., Parshina A.V., Yaroslavtsev A.B. // Membranes. 2022. V. 13. № 1. P. 13.
  37. Yeo R.S. // Polymer. 1980. V. 21. № 4. P. 432.
  38. Gebel G., Aldebert P., Pineri M. // Polymer. 1993. V. 34. № 2. P. 333.
  39. Doyle M., Lewittes M.E., Roelofs M.G., Perusich S.A., Lowrey R.E. // J. Membr. Sci. 2001. V. 184. № 2. P. 257.
  40. Mauritz K.A., Moore R.B. // Chem. Rev. 2004. V. 104. № 10. P. 4535.
  41. Choi S., Parameswaran S., Choi J.H. // Phys. Chem. Chem. Phys. 2020. V. 22. № 30. P. 17181.
  42. Wakisaka A., Ohki T. // Faraday Discuss. 2005. V. 129. P. 231.
  43. Chernyuk S.D., Safronov A.P., Adamova L.V., Bushkova O.V. // Polymer Science, Series A. 2023. V. 65. № 2. P. 119.
  44. Тагер А.А. Физикохимия полимеров. Издание 4-е. М.: Научный мир, 2007. 576 с.
  45. Сафронов А.П., Тагер А.А. // Высокомолекулярные соединения. Серия А. 1991. Т. 33. № 10. С. 2198.
  46. Kusoglu A., Weber A.Z. // Chem. Rev. 2017. V. 117. № 3. P. 987.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Dependence of the degree of swelling (a) and enthalpy of swelling (b) on solvent donor number values.

下载 (104KB)
3. Fig. 2. Swelling degree of Li-Nafion samples in aqueous solutions of ethanol and 2-propanol of different concentrations at 25°C.

下载 (141KB)
4. Fig. 3. Enthalpy of swelling of dry Li-Nafion samples in aqueous solutions of ethanol and 2-propanol of different concentrations at 25°C.

下载 (130KB)
5. Fig. 4. Enthalpy of swelling of partially swollen Li-Nafion samples at 25°C in DMFA and NMP.

下载 (89KB)
6. Fig. 5. Concentration dependence of enthalpy of mixing of Li-Nafion with DMFA and NMP at 25°C.

下载 (96KB)

版权所有 © Russian Academy of Sciences, 2024