Optimization of the Hydrodynamic Regime in the Flow Electrodializator Cell

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Electrodialysis is a water treatment and wastewater treatment technology that uses an electric field gradient and ion exchange membranes to separate ions in aqueous solutions. Studies conducted using this technology have shown the influence of the hydrodynamic regime on the efficiency of the process, the rate of mass transfer and polarization concentration. The article presents experimental results, mathematical calculations and numerical modeling in the universal software system of analysis by the Ansys finite element method. Theoretical calculated results show a good correlation with the results of hydrodynamic processes in the apparatus obtained experimentally. The hydrodynamic regime in the channel of the electrodialyzer cell has been studied, the influence of the mesh geometry on the distribution of fluid flow over the membrane surface has been shown, and the change in flow velocity and pressure depending on the structure of the mesh has been described.

About the authors

A. A. Filimonova

Federal State Budgetary Educational Institution of Higher Education “Kazan State Power Engineering University”

Author for correspondence.
Email: aachichirova@mail.ru
Russia, 420066, Kazan, Krasnoselskaya str., 51

A. A. Chichirov

Federal State Budgetary Educational Institution of Higher Education “Kazan State Power Engineering University”

Email: aachichirova@mail.ru
Russia, 420066, Kazan, Krasnoselskaya str., 51

A. V. Pechenkin

Federal State Budgetary Educational Institution of Higher Education “Kazan State Power Engineering University”

Email: aachichirova@mail.ru
Russia, 420066, Kazan, Krasnoselskaya str., 51

N. D. Chichirova

Federal State Budgetary Educational Institution of Higher Education “Kazan State Power Engineering University”

Email: aachichirova@mail.ru
Russia, 420066, Kazan, Krasnoselskaya str., 51

References

  1. Филимонова А.А., Чичирова Н.Д., Чичиров А.А., Минибаев А.И. // Труды Академэнерго. 2020. Т. 2(59). С. 55–76.
  2. Заболоцкий В.И., Березина Н.П., Никоненко В.В., Шудренко А.А. // Наука Кубани. 2010. № 3. С. 4–10.
  3. Havelka J., Fárová H., Jiříček T., Kotala T., Kroupa J. // Water Sci Technol. 2019. V. 79(8). P. 1580–1586.
  4. Филимонова А.А. // Мембраны и мембранные технологии. 2020. Т. 10. С. 237–248.
  5. Al-Amshawee S., Husain M., Yunus M., Azmin F., Lekan O. // Chemical Engineering Communications. 2022. P. 1–25.
  6. Balster J., Stamatialis D., Wessling M. // J. Membrane Science. 2009. V. 341. P. 131–138.
  7. Belfort G., Guter G. // Desalination, 1972. V. 10. № 3. P. 221–62.
  8. Mehdizadeh S., Yasukawa M., Abo T., Kakihana Y., Higa M. // J. Membrane Science. 2019. V. 572. P. 271–280.
  9. He Z., Gao X., Zhang Y., Wang Y., Wang J. // Desalination and Water Treatment. 2016. V. 57. 58. P. 28176–28186.
  10. Bucs S.S., Radu A.I., Lavric V., Vrouwenvelder J.S., Picioreanu C. // Desalination. 2014. V. 343. P. 26–37.
  11. Shakaib M., Hasani S.M.F., Mahmood M. // J. Membrane Science. 2007. V. 297. P. 74–89.
  12. Ghidossi R, Veyret D., Moulin P. // Chemical Engineering and Processing: Process Intensification. 2006. V. 45 № 6. P. 437–454.
  13. Gu B., Adjiman C.S., Xu X.Y. // J. Membrane Science. 2017. V. 527. P. 78–91.
  14. Горобченко А.Д., Мареев С.А., Никоненко В.В. // Свидетельство о регистрации программы для ЭВМ RU 2018661975. 24.09.2018. Заявка № 2018619068 от 23.08.2018.
  15. Sun Y., Li J., Li M., Ma Z., Wang X. // Separation and Purification Technology. 2021. V. 254. P. 117599.
  16. Enciso R., Delgadillo J.A., Domínguez O., Rodríguez-Torres I. // Desalination. 2017. V. 408. P. 127–132.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (98KB)
4.

Download (2MB)
5.

Download (1MB)
6.

Download (160KB)

Copyright (c) 2023 А.А. Филимонова, А.А. Чичиров, А.В. Печенкин, Н.Д. Чичирова