Kinetic Transport Coefficients Through a Bilayer Ion Exchange Membrane during Electrodiffusion

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Analytical expressions for the specific coefficients of electrical conductivity and electrodiffusion through a bilayer ion exchange membrane during the electrodiffusion process are obtained within the framework of thermodynamics of irreversible processes and a homogeneous model of a fine-porous membrane. The influence of physicochemical characteristics of the modifying layer and electrolyte concentration on the values of the obtained coefficients at fixed physicochemical characteristics of the substrate has been investigated by the method of mathematical modelling. It is shown that electrical conductivity and electrodiffusion of the modified membrane at coincidence of signs of volume charges of the membrane layers increase with an increase of density of volume charge of the modifying layer and decrease at their difference or an increase of thickness of the modifying layer. With increasing electrolyte concentration, the abovementioned characteristics of the modified membrane increase regardless of the sign of the charges of the membrane layers. The obtained analytical expressions can be used in modelling electromembrane processes and predicting the parameters of new surface modified ion exchange membranes.

About the authors

V. V. Ugrozov

Financial University under the Government of the Russian Federation

Author for correspondence.
Email: vugr@rambler.ru
Russia, 125993, Moscow, Leningradsky Prospect, 49

A. N. Filippov

Gubkin University

Email: vugr@rambler.ru
Russia, 119991, Moscow, Leninsky Prospect, 65, building 1

References

  1. Larchet C., Zabolotsky V.I., Plisetskaya N., Nikonenko V.V., Tskhay A., Tastanov K. et al. // Desalination. 2008. V. 222. P. 489.
  2. Strathmann H. // Desalination. 2010. V. 264. P. 268.
  3. Apel P.Y., Bobreshova O.V., Volkov A.V., Volkov V.V., Nikonenko V.V., Stenina I.A., Filippov A.N., Yampolskii Y.P., Yaroslavtsev A.B. // Membr. Membr. Technol. 2019. V. 1. P. 45.
  4. Bergner D. // Chem. Ing. Tech. 1994. V. 66. P. 1026.
  5. Esmaeili N., Gray E.M., Webb C.J. // Chem. Phys. Chem. 2019. V. 20. P. 2016.
  6. Ramaswamy N., Mukerjee S. // Chem. Rev. 2019. V. 119. P. 11945.
  7. Kalathil A., Raghavan A., Kandasubramanian B. // Polym. Technol. Mater. 2019. V. 58. P. 465.
  8. De Groot S., Mazur P. // Non-Equilibrium Thermodynamics. Amsterdam: North-Holland, 1962.
  9. Заболоцкий В.И., Никоненко В.В. // Перенос ионов в мембранах. М.: Наука, 1996.
  10. Nikonenko V.V., Yaroslavtsev A.B., Pourcelly G. // Ion Transfer in and Through Charged Membranes: Structure, Properties, and Theory. In Ionic Interactions in Natural and Synthetic Macromolecules; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2012. P. 267–335.
  11. Koter S. // J. Membr. Sci. 2002. V. 206. P. 201.
  12. Garcia-Morales V., Cervera J., Manzanares J.A. // J. Electroanal. Chem. 2007. V. 599. P. 203.
  13. Filippov A.N., Starov V.M., Kononenko N.A., Berezina N.P. // Adv. Colloid Interface Sci. 2008. V. 139. № 1–2. P. 29.
  14. Filippov A.N., Iksanov R.Kh., Kononenko N.A., Berezina N.P., Falina I.V. // Colloid J. 2010. V. 72. P. 243.
  15. Gnusin N.P., Zabolotsky V.I., Meshechkov A.I. // Russ. J. Phys. Chem. 1980. V. 54. P. 1518.
  16. Zabolotsky V.I., Nikonenko V.V. // J. Memb. Sci. 1993. V. 79. P. 181.
  17. Pourcelly G., Oikonomou An., Gavach C., Hurwitz H.D. // J. Electroanal. Chem. 1990. V. 287. P. 43.
  18. Devanathan R., Venkatnathan A., Rousseau R., Dupuis M., Frigato T., Gu W., Helms V. // J. Phys. Chem. B. 2010. V. 114. P. 13681.
  19. Pourcelly G., Oikonomou An., Gavach C., Hurwitz H.D. // J. Electroanal. Chem. 1990. V. 287. P .43.
  20. Nichka V.S., Mareev S.A., Porozhnyy M.V., Shkirskaya S.A., Safronova E.Y., Pismenskaya N.D., Nikonenko V.V. // Membr. Membr.Technol. 2019. V. 1. P. 190.
  21. Kozmai A.A., Pismenskaya N.N., Nikonenko V.V. // Int. J. Mol. Sci. 2022. V. 23. P. 2238.
  22. Филиппов А.Н. // Коллоид. журн. 2018. Т. 80. С. 745.
  23. Филиппов А.Н. // Коллоид. журн. 2018. Т. 80. С. 758.
  24. Filippov A.N., Philippova T.S. // Colloids Interfaces. 2022. V. 6. P. 34.
  25. Peters P.B., van Roij R., Bazant M.Z., Biesheuvel P.M. // Phys. Rev. 2016. E 93. P. 053108
  26. Ryzhkov I.I., Vyatkin A.S., Minakov A.V. // J. Siberian Federal University. Mathematics & Physics 2018. V. 11. № 2. P. 494.
  27. Balanneca B., Ghoufib A., Szymczyk A. // J. Membrane Sci. 2018. V. 552. № 15. P. 336.
  28. Falina I., Loza N., Loza E., Titskaya E., Romanyuk N. // Membranes. 2021. V. 11. P. 227.
  29. Andreeva M.A., Loza N.V., Pismenskaya N.D., Dammak L., Larchet C. // Membranes. 2020. V. 10. № 7. P. 145.
  30. Golubenko D.V., Yaroslavtsev A.B. // J. Membr. Sci. 2021. V. 635. 119466.
  31. Gil V.V., Andreeva M.A., Jansezian L., Han J., Pismenskaya N.D., Nikonenko V.V., Larchet C., Dammak L. // Electrochim. Acta 2018. V. 281. P. 472.
  32. Zhao, J. Sun L., Chen Q., Lu H., Wang J. // J. Membr. Sci. 2019. V. 582. P. 211.
  33. Afsar N.U., Shehzad M.A., Irfan M., Emmanuel K., Sheng F., Xu T., Ren X., Ge L., Xu T. // Desalination. 2019. V. 458. P. 25.
  34. Matthew Sheorn, Humayun Ahmad, Santanu Kundu // American Chemical Society. 2023. V. 1. № 2. P. 832.
  35. Filippov A.N. // Colloid J. 2016. V. 78. № 3. P. 397.
  36. Ugrozov V.V., Filippov A.N. // Colloid J. 2022. V. 84. № 6. P. 761.
  37. Березина Н.П., Кононенко Н.А., Филиппов А.Н., Шкирская С.А., Фалина И.В., Сычева А.А. // Электрохимия. 2010. Т. 46. С. 515.
  38. Długołecki P., Ogonowski P., Metz S.J., Saakes M., Nijmeijera K., Wessling M. // J. Membrane Science. 2010. V. 349. P. 369.
  39. Galama A.H., Hoog N.A., Yntema D.R. // Desalination. 2016. V. 380. P. 1.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (23KB)
3.

Download (33KB)
4.

Download (54KB)
5.

Download (46KB)

Copyright (c) 2023 В.В. Угрозов, А.Н. Филиппов