A Survey on Beamspace Millimeter-wave Massive Mimo Systems: An Overview of Open Issues, Challenges, and Future Research Trends


Цитировать

Полный текст

Аннотация

The channel sparsity is exploited by transforming the channel into an angular domain from the spatial domain at millimeter wave frequencies in Beamspace Multiple-Input Multiple-Output (B-MIMO) systems. Every beam in B-MIMO corresponds to an individual radio frequency (RF) chain, and thus, beam selection techniques can reduce the RF hardware complexity. RF chain limitation is needed for an ideal beamspace precoding scheme to attain good system performance across the entire bandwidth. New methods of beamspace channel estimation with a small amount of estimation error and low computational complexity are challenging in the beam domain due to the larger antenna arrays deployed. A novel beamspace processing technique to improve the direction of arrival estimation performance for different array configurations with improvement in system performance is desired in a 5G system. A detailed review of the B-MIMO system with its architecture and various beam selection techniques is presented in this paper. The scope of the work is elaborated by incorporating various existing beamspace precoding and channel estimation methods. The paper also presents various beamspace processing schemes for parameter estimation with a focus on the direction of arrival estimation performance.

Об авторах

Roscia Jayakumar

Department of Electronics and Communication Engineering, P.S.R Engineering College

Автор, ответственный за переписку.
Email: info@benthamscience.net

Allwyn Arul

Department of Electrical and Electronics Engineering,, Mepco Schlenk Engineering College,

Email: info@benthamscience.net

Список литературы

  1. Pi Z, Khan F. An introduction to millimeter-wave mobile broadband systems. IEEE Commun Mag 2011; 49(6): 101-7. doi: 10.1109/MCOM.2011.5783993
  2. Sun S, Rappaport T, Heath R, Nix A, Rangan S. Mimo for millimeter-wave wireless communications: Beamforming, spatial multiplexing, or both? IEEE Commun Mag 2014; 52(12): 110-21. doi: 10.1109/MCOM.2014.6979962
  3. Lu L, Li GY, Swindlehurst AL, Ashikhmin A, Zhang R. An overview of massive MIMO: Benefits and challenges. IEEE J Sel Top Signal Process 2014; 8(5): 742-58. doi: 10.1109/JSTSP.2014.2317671
  4. Larsson EG, Marzetta TL, Marzetta TL. Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Trans Commun 2013; 61(4): 1436-49. doi: 10.1109/TCOMM.2013.020413.110848
  5. Swindlehurst AL, Ayanoglu E, Heydari P, Capolino F. Millimeterwave massive MIMO: The next wireless revolution? IEEE Commun Mag 2014; 52(9): 56-62. doi: 10.1109/MCOM.2014.6894453
  6. Liang L, Xu W, Dong X. Low-complexity hybrid precoding in massive multiuser MIMO systems. IEEE Wirel Commun Lett 2014; 3(6): 653-6. doi: 10.1109/LWC.2014.2363831
  7. Cui S, Goldsmith AJ, Bahai A. Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks. IEEE Journal on Selected Areas of Commun 2004; 22(6): 1089-98. doi: 10.1109/JSAC.2004.830916
  8. Sayeed A, Brady J. Beam space MIMO for high-dimensional multiuser communication at millimeter-wave frequencies Proc IEEE GLOBECOM. 3679-84.
  9. Gao X, Dai L, Sayeed AM. Low RF-complexity technologies to enable millimeter-wave MIMO with large antenna array for 5G wireless communications. IEEE Commun Mag 2018; 56(4): 211-7. doi: 10.1109/MCOM.2018.1600727
  10. Brady J, Behdad N, Sayeed AM. Beam space MIMO for millimeter wave communications: System architecture, modeling, analysis and measurements. IEEE Trans Antenn Propag 2013; 61(7): 3814-27. doi: 10.1109/TAP.2013.2254442
  11. Zeng Y, Zhang R. Millimeter wave MIMO with lens antenna array: A new path division multiplexing paradigm. IEEE Trans Commun 2016; 64(4): 1557-71. doi: 10.1109/TCOMM.2016.2533490
  12. Sayeed A, Behdad N. Continuous aperture phased MIMO: A new architecture for optimum line-of-sight links Proc IEEE APSURSI. 293-6. doi: 10.1109/APS.2011.5996700
  13. Awan AA, Irfanullah S, Khattak S, Malik AN. Performance comparisons of fixed and adaptive beamforming techniques for 4G smart antennas Int Conf Commun Inf Comput Digital Syst. 17-20. doi: 10.1109/C-CODE.2017.7918894
  14. Rappaport TS, Sun S, Mayzus R, et al. Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access 2013; 1: 335-49. doi: 10.1109/ACCESS.2013.2260813
  15. Molisch AF, Win MZ. MIMO systems with antenna selection. IEEE Microw Mag 2004; 5(1): 46-56. doi: 10.1109/MMW.2004.1284943
  16. Mehta N, Kashyap S, Molisch A. Antenna selection in LTE: From motivation to specification. IEEE Commun Mag 2012; 50(10): 144-50. doi: 10.1109/MCOM.2012.6316788
  17. Scarborough C, Venugopal K, Alkhateeb A, Heath RW. Beamforming in millimeter wave systems: Prototyping and measurement results doi: 10.1109/VTCFall.2018.8690621
  18. Hashemi M, Koksal CE, Shroff NB. Rate-optimal power and bandwidth allocation in an integrated Sub-6 GHz-Millimeter wave architecture 51st Asilomar Conference on Signals, Systems, and Computers. 1207-11. doi: 10.1109/ACSSC.2017.8335543
  19. Wen M, Zheng B, Kim KJ, et al. A survey on spatial modulation in emerging wireless systems: Research progresses and applications. IEEE J Sel Areas Comm 2019; 37(9): 1949-72. doi: 10.1109/JSAC.2019.2929453
  20. Giordani M, Polese M, Roy A, Castor D, Zorzi M. A tutorial on beam management for 3GPP NR at mmWave frequencies. IEEE Commun Surv Tutor 2019; 21(1): 173-96. doi: 10.1109/COMST.2018.2869411
  21. Yüzgeçcioğlu M, Jorswieck E. Hybrid beamforming with spatial modulation in multi-user massive MIMO mmwave networks. 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). Montreal. 2017; pp. 1-6. doi: 10.1109/PIMRC.2017.8292710
  22. Gao X, Dai L, Chen Z, Wang Z, Zhang Z. Near-optimal beam selection for beam space mmwave massive MIMO systems. IEEE Commun Lett 2016; 20(5): 1054-7. doi: 10.1109/LCOMM.2016.2544937
  23. Yang-Seok Choi. Alamouti SM. Approximate comparative analysis of interference suppression performance between antenna and beam selection techniques. IEEE Trans Wirel Commun 2006; 5(9): 2615-23. doi: 10.1109/TWC.2006.1687786
  24. Sanayei S, Nosratinia A. Antenna selection in MIMO systems. IEEE Commun Mag 2004; 42(10): 68-73. doi: 10.1109/MCOM.2004.1341263
  25. Choi Y, Alamouti SM. Performance analysis and comparisons of antenna and beam selection diversity. IEEE 60th Vehicular Technology Conference. 1: 165-70.
  26. Devimeena S, Venkatesh D. Design and implementation of a beam forming network for a phased array antenna. Def Sci J 2015; 65(1): 46-52. doi: 10.14429/dsj.65.6940
  27. Hegde A, Srinivas KV. Matching theoretic beam selection in millimeter-wave multi-user MIMO systems. IEEE Access 2019; 7: 25163-70. doi: 10.1109/ACCESS.2019.2897894
  28. Attiah ML. A survey of mmwave user association mechanisms and spectrum sharing approaches: An overview, open issues and challenges, future research trends. Wireless Netwoks 2020; 26: 2487-514.
  29. Amadori PV, Masouros C. Low RF-complexity millimeter-wave beam space-MIMO systems by beam selection. IEEE Trans Commun 2015; 63(6): 2212-23. doi: 10.1109/TCOMM.2015.2431266
  30. Heath RW, González-Prelcic N, Rangan S, Roh W, Sayeed AM. An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J Sel Top Signal Process 2016; 10(3): 436-53. doi: 10.1109/JSTSP.2016.2523924
  31. Brady J, Behdad N, Sayeed A. Discrete lens array modeling and design for optimum MIMO communications at mm-wave Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation. 1-2. doi: 10.1109/APS.2012.6349292
  32. Rappaport TS, MacCartney GR, Samimi MK, Sun S. Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design. IEEE Trans Commun 2015; 63(9): 3029-56. doi: 10.1109/TCOMM.2015.2434384
  33. Qiu S, Luo K, Jiang T. Beam selection for mmwave massive MIMO systems under hybrid transceiver architecture. IEEE Commun Lett 2018; 22(7): 1498-501. doi: 10.1109/LCOMM.2018.2829482
  34. Pal R, Srinivas KV, Chaitanya AK. A beam selection algorithm for millimeter- wave multi-user MIMO systems. IEEE Commun Lett 2018; 22(4): 852-5. doi: 10.1109/LCOMM.2018.2803805
  35. Pal R, Sarawadekar KP, Srinivas KV. A decentralized beam selection for mmwaveBeam space multi-user MIMO systems. AEU - Int J Electron Commun 2019; 111(4): 152884.
  36. Pal R, Chaitanya AK, Srinivas KV. Low-complexity beam selection algorithms for millimeter wave beamspace MIMO systems. IEEE Commun Lett 2019; 23(4): 768-71. doi: 10.1109/LCOMM.2019.2902147
  37. Lu X, Sun Q, Xu C, Wu Y. Joint user scheduling and beam selection for maritime large-scale antenna systems. IOP Conf Series Mater Sci Eng 2019; 490(6): 072015. doi: 10.1088/1757-899X/490/7/072015
  38. Sarker MAL, Kader MF, Han DS. Rate-loss mitigation for a millimeter-wave beamspace MIMO lens antenna array system using a hybrid beam selection scheme. IEEE Syst J 2020; 14(3): 3582-5. doi: 10.1109/JSYST.2020.2964283
  39. Jun S, Naoto I. Performance evaluation of sparse channel estimation for massive MIMO in LOS and NLOS environments. IEICE Commun Express 2019; 8(5): 172-7.
  40. Shiney RJ, Indumathi G. Efficient beam allocation strategy for statistical beamforming-based massive multiple-input–multiple-output downlink systems. IET Commun 2019; 13(16): 2461-8.
  41. Shiney RJ, Indumathi G. Joint beam selection and user association strategy for beam space millimeter wave downlink systems. Int J Commun Syst 2020; 33(11): 1-14.
  42. Xu H, Yu J, Zhu S. Ping-Pong optimization of user selection and beam allocation for millimeter wave communications. IEEE Access 2019; 7: 133178-89. doi: 10.1109/ACCESS.2019.2941261
  43. Wang J, Zhu H, Dai L, Gomes NJ, Wang J. Low-complexity beam allocation for switched-beam based multiuser massive MIMO systems. IEEE Trans Wirel Commun 2016; 15(12): 8236-48. doi: 10.1109/TWC.2016.2613517
  44. Sun X, Qi C. Codeword selection and hybrid precoding for multiuser millimeter- wave massive MIMO systems. IEEE Commun Lett 2019; 23(2): 386-9. doi: 10.1109/LCOMM.2018.2889077
  45. Long Y, Chen Z, Fang J, Tellambura C. Data-driven-based analog beam selection for hybrid beamforming under mm-wave channels. IEEE J Sel Top Signal Process 2018; 12(2): 340-52. doi: 10.1109/JSTSP.2018.2818649
  46. He S, Wu Y, Ng DWK, Huang Y. Joint optimization of analog beam and user scheduling for millimeter wave communications. IEEE Commun Lett 2017; 21(12): 2638-41. doi: 10.1109/LCOMM.2017.2745570
  47. Shili M, Hajjaj M, Ammari ML. Weighted-gain beam selection for beamspace mmwave massive MIMO systems Advanced information networking and applications. Cham: Springer 2020; Vol. 1151. doi: 10.1007/978-3-030-44041-1_82
  48. Valduga ST, Deneire L, de Almeida ALF, Maciel TF, Aparicio-Pardo R. Low complexity beam selection for sparse massive MIMO systems 2017 International Symposium on Wireless Communication Systems (ISWCS). Bologna. 2017; pp. 414-9. doi: 10.1109/ISWCS.2017.8108150
  49. Li D, Li X, Dantao L, Zhou B, Yanbin Z, Danfeng M. minimum interference beam selection for millimeter wave BeamSpace MIMO System communications and networking. 12th International Conference, ChinaCom. Xi‟an, China.. 2017. October 10- 12;
  50. Guo Z, Li J. Time‐variant beam selection for lens‐based millimetrewave massive MIMO systems. Electron Lett 2017; 53(17): 1226-8. doi: 10.1049/el.2017.2259
  51. Xue Q, Li Q, Dong C, Suo S, Niu K. Beam selection for cell-free millimeter- wave massive MIMO systems 26th IEEE Asia-Pacific. Conference on Communications (APCC). 310-5. doi: 10.1109/APCC49754.2021.9609844
  52. Yang J, Yu J, Wang S, Liu H. Low-complexity beam selection algorithms based on SVD for mmwave massive MIMO systems. J Comput Inf Syst 2022; 26(2)
  53. Wagner S, Couillet R, Debbah M, Slock DTM. Large system analysis of linear precoding in correlated MISO broadcast channels under limited feedback. IEEE Trans Inf Theory 2012; 58(7): 4509-37. doi: 10.1109/TIT.2012.2191700
  54. Kammoun A, Müller A, Björnson E, Debbah M. Linear precoding based on polynomial expansion: Large-scale multi-cell MIMO systems. IEEE J Sel Top Signal Process 2014; 8(5): 861-75. doi: 10.1109/JSTSP.2014.2322582
  55. Windpassinger C, Fischer RFH, Vencel T, Huber JB. Precoding in multi antenna and multiuser communications. IEEE Trans Wirel Commun 2004; 3(4): 1305-16. doi: 10.1109/TWC.2004.830852
  56. Masouros C, Sellathurai M, Ratnarajah T. Maximizing energyefficiency in the vector precoded MU-MISO downlink by selective perturbation. IEEE Trans Wireless Comms 2014; 13(9): 4974-84.
  57. Masouros C, Sellathurai M, Ratnarajah T. Interference optimization for transmit power reduction in Tomlinson-Harashima precoded MIMO downlinks. IEEE Trans Signal Process 2012; 60(5): 2470-81. doi: 10.1109/TSP.2012.2187520
  58. Garcia A, Masouros C. Power-efficient tomlinson-harashima precoding for the downlink of multi-user MISO systems. IEEE Trans Comms 2014; 62(6): 1884-96.
  59. Masouros C, Alsusa E. Two-stage transmitter precoding based on data-driven code-hopping and partial zero forcing beamforming for MC-CDMA communications. IEEE Trans Wirel Commun 2009; 8(7): 3634-45. doi: 10.1109/TWC.2009.080740
  60. Masouros C. Correlation rotation linear precoding for MIMO broadcast communications. IEEE Trans Signal Process 2011; 59(1): 252-62. doi: 10.1109/TSP.2010.2088395
  61. Masouros C, Alsusa E. Soft transmitter precoding for the downlink of DS/CDMA communication systems. IEEE Trans Vehicular Technol 2010; 59(1): 203-15. doi: 10.1109/TVT.2009.2026906
  62. Joham M, Utschick W, Nossek JA. Linear transmit processing in MIMO communications systems. IEEE Trans Signal Process 2005; 53(8): 2700-12. doi: 10.1109/TSP.2005.850331
  63. Sayeed A, Sivanadyan T. Wireless Communication and Sensing in Multipath environments with Multi-antenna wireless TransceiversIn: Handbook on Array Processing and Sensor Networks. (1st ed..), 2010.
  64. Sivanadyan T, Sayeed A. Space-time reversal techniques for wideband MIMO communication circuits, systems and computers, 1977 Conference Record 1977 11th Asilomar Conference on. doi: 10.1109/ACSSC.2008.5074790
  65. Gesbert D, Kountouris M, Heath RW, Chae C, Salzer T. Shifting the MIMO paradigm. IEEE Signal Process Mag 2007; 24(5): 36-46. doi: 10.1109/MSP.2007.904815
  66. Xinying Zhang, Molisch AF, Kung S-Y. Variable-phase-shift-based RF-baseband codesign for MIMO antenna selection. IEEE Trans Signal Process 2005; 53(11): 4091-103. doi: 10.1109/TSP.2005.857024
  67. Ayach OE, Rajagopal S, Abu-Surra S, Pi Z, Heath RW. Spatially sparse precoding in millimeter wave MIMO systems. IEEE Trans Wirel Commun 2014; 13(3): 1499-513. doi: 10.1109/TWC.2014.011714.130846
  68. Gao X, Dai L, Han S. i C-L, Heath RW. Energy-efficient hybrid analog and digital precoding for Mmwave MIMO systems with large antenna arrays. IEEE J Sel Areas Comm 2016; 34(4): 998-1009. doi: 10.1109/JSAC.2016.2549418
  69. Sohrabi F, Yu W. Hybrid digital and analog beamforming design for large-scale antenna arrays. IEEE J Sel Top Signal Process 2016; 10(3): 501-13. doi: 10.1109/JSTSP.2016.2520912
  70. Hur S, Kim T, Love DJ, Krogmeier JV, Thomas TA, Ghosh A. Millimeter wave beamforming for wireless backhaul and access in small cell networks. IEEE Trans Commun 2013; 61(10): 4391-403. doi: 10.1109/TCOMM.2013.090513.120848
  71. Chen Z, Zhao N, So DKC, Tang J, Zhang XY, Wong KK. Joint altitude and hybrid beamspace precoding optimization for UAV-enabled multiuser mmWave MIMO system. IEEE Trans Vehicular Technol 2022; 71(2): 1713-25. doi: 10.1109/TVT.2021.3134044
  72. Méndez-Rial R, Rusu C, González-Prelcic N, Alkhateeb A, Heath RW. Hybrid MIMO architectures for millimeter wave communications: Phase shifters or switches? IEEE Access 2016; 4: 247-67. doi: 10.1109/ACCESS.2015.2514261
  73. Alkhateeb A, Leus G, Heath RW. Limited feedback hybrid precoding for multi-user millimeter wave systems. IEEE Trans Wirel Commun 2015; 14(11): 6481-94. doi: 10.1109/TWC.2015.2455980
  74. Taubock G, Hlawatsch F, Eiwen D, Rauhut H. Compressive estimation of doubly selective channels in multicarrier systems: Leakage effects and sparsity-enhancing processing. IEEE J Sel Top Signal Process 2010; 4(2): 255-71. doi: 10.1109/JSTSP.2010.2042410
  75. Cheng Z, Wei Z, Li H, Yang H. SLNR-based beamspace precoding and beam selection for wideband mmWave massive MIMO. IEEE Commun Lett 2022; 26(2): 478-82. doi: 10.1109/LCOMM.2021.3128969
  76. Dutta S, Barati CN, Ramirez D, Dhananjay A, Buckwalter JF, Rangan S. A case for digital beamforming at mmwave. IEEE Trans Wirel Commun 2020; 19(2): 756-70. doi: 10.1109/TWC.2019.2948329
  77. Alkhateeb A, El Ayach O, Leus G, Heath RW Jr. Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE J Sel Top Signal Process 2014; 8(5): 831-46. doi: 10.1109/JSTSP.2014.2334278
  78. Gao X, Dai L, Zhou S, Sayeed AM, Hanzo L. Wideband beamspace channel estimation for millimeter-wave MIMO systems relying on lens antenna arrays. IEEE Transactions on Signal Processing 2019; 67(18): 4809-24. doi: 10.1109/TSP.2019.2931202
  79. Cao Z, Geng H, Chen Z, Chen P. Sparse-based millimeter wave channel estimation with mutual coupling effect. Electronics 8(3): 358. doi: 10.3390/electronics8030358
  80. Lu X, Yang W, Cai Y, Guan X. Comparison of CS-based channel estimation for millimeter wave massive MIMO systems. Appl Sci 2019; 9(20): 4346. doi: 10.3390/app9204346
  81. Alkhateeb A, Mo J, Gonzalez-Prelcic N, Heath RW. MIMO precoding and combining solutions for millimeter-wave systems. IEEE Commun Mag 2014; 52(12): 122-31. doi: 10.1109/MCOM.2014.6979963
  82. Gao Z, Hu C, Dai L, Wang Z. Channel estimation for millimetre wave massive MIMO with hybrid precoding over frequency-selective fading channels. IEEE Commun Lett 2016; 20(6): 1259-62. doi: 10.1109/LCOMM.2016.2555299
  83. Brady J, Sayeed A. Beamspace MU-MIMO for high-density gigabit small cell access at millimeter-wave frequencies Proc IEEE SPAWC Workshops. 80-4. doi: 10.1109/SPAWC.2014.6941321
  84. Gao X, Dai L, Han S, Chih-Lin I, Adachi F. Beamspace channel estimation for 3D lens-based millimeter-wave massive MIMO systems 8th International Conference on Wireless Communications & Signal Processing (WCSP). Yangzhou, China. 2016; pp. 1-5. doi: 10.1109/WCSP.2016.7752487
  85. Rappaport TS, Heath RW Jr, Daniels RC, Murdock JN. Millimeter Wave Wireless Communications. Prentice Hall 2015.
  86. Mo J, Schniter P, González Prelcic N, Heath Jr RW. Channel estimation in millimeter wave MIMO systems with one-bit quantization Proc Asilomar Conf Signals, Syst, Comput, Pacific Grove CA, USA. 2014; pp. 957-61. doi: 10.1109/ACSSC.2014.7094595
  87. Schniter P, Sayeed A. Channel estimation and precoder design for millimeter- wave communications: The sparse way Proc Asilomar Conf Signals, Syst, Comput. 273-7. doi: 10.1109/ACSSC.2014.7094443
  88. Deng J, Tirkkonen O, Studer C. mmwave channel estimation via atomic norm minimization for multi-user hybrid precoding Proc IEEE Wireless Commun Netw Conf (WCNC). 1-6. doi: 10.1109/WCNC.2018.8377093
  89. Wang Y, Xu P, Tian Z. Efficient channel estimation for massive MIMO systems via truncated two-dimensional atomic norm minimization ICC 2017 - 2017 IEEE International Conference on Communications. doi: 10.1109/ICC.2017.7996670
  90. Lee J, Gil GT, Lee YH. Channel estimation via orthogonal matching pursuit for hybrid MIMO systems in millimeter wave communications. IEEE Trans Commun 2016; 64(6): 2370-86. doi: 10.1109/TCOMM.2016.2557791
  91. Tang G, Bhaskar BN, Shah P, Recht B. Compressed sensing off the grid. IEEE Trans Inf Theory 2013; 59(11): 7465-90. doi: 10.1109/TIT.2013.2277451
  92. Zhang P, Gan L, Sun S, Ling C. Atomic norm denoising-based channel estimation for massive multiuser MIMO systems ICC 2015 - 2015 IEEE International Conference on Communications. doi: 10.1109/ICC.2015.7249042
  93. Mamandipoor B, Ramasamy D, Madhow U. Newtonized orthogonal matching pursuit: Frequency estimation over the continuum. IEEE Trans Signal Process 2016; 64(19): 5066-81. doi: 10.1109/TSP.2016.2580523
  94. Ghods R, Gallyas-Sanhueza A, Mirfarshbafan SH, Studer C. BEACHES: beamspace channel estimation for multi-antenna mmwave systems and beyond IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). Cannes, France. 2019; pp. 1-5. doi: 10.1109/SPAWC.2019.8815576
  95. Tibshirani R. Regression shrinkage and selection via the LASSO. J R Stat Soc B 1996; 58(1): 267-88. doi: 10.1111/j.2517-6161.1996.tb02080.x
  96. Mirfarshbafan SH, Gallyas-Sanhueza A, Ghods R, Studer C. Beamspace channel estimation for massive MIMO mmWave systems: Algorithm and VLSI design. IEEE Trans Circuits Syst I Regul Pap 2020; 67(12): 5482-95. doi: 10.1109/TCSI.2020.3023023
  97. Huang C, Liu L, Yuen C, Sun S. Iterative channel estimation using LSE and sparse message passing for mmwave MIMO systems. IEEE Trans Signal Process 2019; 67(1): 245-59. doi: 10.1109/TSP.2018.2879620
  98. Li X, Fang J, Li H, Wang P. Millimeter wave channel estimation via exploiting joint sparse and low-rank structures. IEEE Trans Wirel Commun 2018; 17(2): 1123-33. doi: 10.1109/TWC.2017.2776108
  99. Donoho L, Maleki A, Montanari A. Message passing algorithms for compressed sensing: I. Motivation and construction Proc Inf Theory Workshop (ITW). Cairo, Egypt. 2010; pp. 1-5. doi: 10.1109/ITWKSPS.2010.5503193
  100. Zou X, Li F, Fang J, Li H. Computationally efficient sparse Bayesian learning via generalized approximate message passing Proc IEEE Int Conf Ubiquitous Wireless Broadband (ICUWB). Nanjing, China. 2016; pp. 1-4. doi: 10.1109/ICUWB.2016.7790383
  101. Zhang Y, Mu Y, Liu Y, Zhang T, Qian Y. Deep learning-based beamspace channel estimation in mmwave massive MIMO systems. IEEE Wirel Commun Lett 2020; 9(12): 2212-5. doi: 10.1109/LWC.2020.3019321
  102. Zhang R, Tan W, Nie W, Wu X, Liu T. Deep learning-based channel estimation for mmwave massive MIMO systems in mixed-ADC architecture. Sensors 2022; 22(10): 3938?. doi: 10.3390/s22103938
  103. Zhao H, Zhang L, Shen Y. On the optimal beamspace design for direct localization systems Proceedings of the 2018 IEEE International Conference on Communications (ICC). Kansas City, MO, USA. 2018; pp. 1-6. doi: 10.1109/ICC.2018.8422344
  104. Zhao H, Zhang N, Shen Y. Robust beamspace design for direct localization Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Brighton, UK. 2019; pp. 4360-4.
  105. Wang X, Aboutanios E. Adaptive reduced-dimensional beamspace beamformer design by analogue beam selection IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Brighton, UK. 2019; pp. 4350-4. doi: 10.1109/ICASSP.2019.8683360
  106. Lee J, Gil GT, Lee YH. Channel estimation through orthogonal matching pursuit for hybrid MIMO systems in millimeter wave communications. IEEE Trans Commun 2016; 64(6): 2370-86. doi: 10.1109/TCOMM.2016.2557791
  107. Gao X, Dai L, Han S. i C-L, Wang X. Reliable beamspace channel estimation for millimeter-wave massive MIMO systems with lens antenna array. IEEE Trans Wirel Commun 2017; 16(9): 6010-21. doi: 10.1109/TWC.2017.2718502
  108. Ta-Sung Lee. Efficient wideband source localization using beamforming invariance technique. IEEE Trans Signal Process 1994; 42(6): 1376-87. doi: 10.1109/78.286954
  109. Ward DB, Ding Z, Kennedy RA. Broadband DOA estimation using frequency invariant beamforming. IEEE Trans Signal Process 1998; 46(5): 1463-9. doi: 10.1109/78.668812
  110. Mohanna M, Mohamed Rabeh L, Emad Zieur M, Hekala S. Optimization of MUSIC algorithm for angle of arrival estimation in wireless communications. NRIAG J Astron Geophys 2013; 2(1): 116-24. doi: 10.1016/j.nrjag.2013.06.014
  111. Xiaofang D, Baixiao C, Minglei Y, Guimei Z. Beamspace unitary ESPRIT algorithm for angle estimation in bistatic MIMO radar. Int J Antennas Propag 2015; 2015: 1-9. doi: 10.1155/2015/621358
  112. Xiong K, Liu Z, Wang P. SAGE-based algorithm for DOA estimation and array calibration in the presence of sensor location errors. J Syst Eng Electron 2019; 30(6): 1074-80. doi: 10.21629/JSEE.2019.06.03
  113. Liu S, Tang L, Bai Y, Zhang X. A super-resolution DOA estimation method for fast-moving targets in MIMO radar. Math Probl Eng 2020; 2020: 1-11. doi: 10.1155/2020/4049785
  114. Chen S, Zhao Y, Hu Y, Niu B. Beamspace scene classification algorithm for low-angle estimation in MIMO radar. J Remote Sens 2022; 14(4) doi: 10.3390/rs14081917
  115. Chen S, Zhao Y, Hu Y, Pang X. A beam space maximum likelihood algorithm for target height estimation for bistatic MIMO radar. ACM Digit Signal Process 2022; 122(3)

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024