Murine Malaria Model: Ketoconazole Prevented Malaria while Proguanil and Sulfadoxine/Pyrimethamine Protected against Malaria-associated Anemia and Kidney Damage


Cite item

Full Text

Abstract

Background::The concern about the global spread of resistant malaria has made the researchers not focus only on the treatment of established infections but relatively more on the prevention of the disease.

Objective::This study evaluates the chemopreventive activity of ketoconazole in a murine malarial model.

Method::Five out of seven groups of mice were pretreated for five days with proguanil (PRG), sulfadoxine/ pyrimethamine (SP), 10, 20, and 40 mg/kg body weight (b.w) of ketoconazole (KET10, KET20, and KET40), before being infected (on the sixth day) with Plasmodium berghei. Two other groups were infected-not-treated (INT) and not-infected-nor-treated (NINT). At 72 hours postinfection, five out of ten mice in each group were sacrificed to assess parasitemia, chemoprevention, hematologic, hepatic, and renal parameters. The remaining mice were observed for 28 days to determine their mean survival day post-infection (SDPI).

Results::All ketoconazole groups, except KET10, demonstrated 100% chemoprevention and significantly higher mean SDPI (p(<0.001) in relation to INT (negative control). There was no significant difference in the mean SDPI observed in KET20 in relation to PRG or NINT (healthy control). A dose-related increase (p(<0.01) in the mean plasma urea was observed when ketoconazole groups were compared to one another: KET10 versus KET20 (p(<0.01) and KET20 versus KET40 (p(<0.01). Sulfadoxine/pyrimethamine demonstrated significantly reduced mean plasma urea (p(<0.001) and creatinine (p(<0.05) in relation to INT and NINT, respectively. While PRG demonstrated significantly higher mean red blood cell (RBC), hemoglobin (HGB), and hematocrit (HCT) in relation to INT.

Conclusion::Ketoconazole possesses prophylactic antimalarial activity with associated dose-related renal impairment. Sulfadoxine/pyrimethamine demonstrated renoprotective potentials, while PRG prevented malaria-associated anemia.

About the authors

Faniran Olumide

Department of Anesthesia, Osun State University Teaching Hospital

Email: info@benthamscience.net

Ayankunle Ademola

Department of Pharmacology and Therapeutics, College of Health Sciences, Osun State University

Author for correspondence.
Email: info@benthamscience.net

Ojurongbe Olusola

Department of Medical Microbiology & Parasitology, College of Health Sciences, Ladoke Akintola University of Technology

Email: info@benthamscience.net

Adekunle Catherine

Department of Medical Microbiology & Parasitology, College of Health Sciences, Osun State University

Email: info@benthamscience.net

References

  1. Nureye D, Assefa S. Old and recent advances in life cycle, pathogenesis, diagnosis, prevention, and treatment of malaria including perspectives in ethiopia. ScientWorldJ 2020; 2020: 1-17. doi: 10.1155/2020/1295381
  2. Plowe CV. Malaria chemoprevention and drug resistance: A review of the literature and policy implications. Malar J 2022; 21(1): 104. doi: 10.1186/s12936-022-04115-8 PMID: 35331231
  3. World Health Organization. Global Technical Strategy for Malaria 2016–2030. 2021. Available from: https://mesamalaria.org/resource-hub/global-technical-strategy-malaria-2016-2030-2021-update (Accessed on 21 December 2022.).
  4. Report WM. WHO. Geneva, Switzerland: World Health Organization 2009.
  5. Kyu HH, Georgiades K, Shannon HS, Boyle MH. Evaluation of the association between long-lasting insecticidal nets mass distribution campaigns and child malaria in Nigeria. Malar J 2013; 12(1): 14. doi: 10.1186/1475-2875-12-14 PMID: 23297758
  6. World Health Organization. World Malaria Report 2018. Available from: http://apps.who.int/iris/bitstream/handle/10665/275867/9789241565653-eng.pdf (Accessed on 21 December 2022.).
  7. Imoru M, Shehu UA, Ihesiulor UG, Kwaru AH. Haematological changes in malaria-infected children in North-West Nigeria. Turk J Med Sci 2013; 43: 838-42. doi: 10.3906/sag-1205-135
  8. Thornton J. Covid-19: Keep essential malaria services going during pandemic, urges WHO. BMJ 2020; 369: m1637. doi: 10.1136/bmj.m1637
  9. World Health Organization. World Malaria Fact Sheet 2022. Available from: https://www.who.int/news-room/fact-sheets/detail/malaria (Accessed on 15 December 2022.).
  10. Dasgupta RR, Mao W, Ogbuoji O. Addressing child health inequity through case management of under-five malaria in Nigeria: an extended cost-effectiveness analysis. Malar J 2022; 21(1): 81. doi: 10.1186/s12936-022-04113-w PMID: 35264153
  11. Mace KE, Lucchi NW, Tan KR. Malaria surveillance : United states, 2018. MMWR Surveill Summ 2022; 71(8): 1-35. doi: 10.15585/mmwr.ss7108a1 PMID: 36048717
  12. Meremikwu MM, Donegan S, Sinclair D, Esu E, Oringanje C. Intermittent preventive treatment for malaria in children living in areas with seasonal transmission. Cochrane Libr 2012; 2012(2): CD003756. doi: 10.1002/14651858.CD003756.pub4 PMID: 22336792
  13. Bardají A, Bassat Q, Alonso PL, Menéndez C. Intermittent preventive treatment of malaria in pregnant women and infants: Making best use of the available evidence. Expert Opin Pharmacother 2012; 13(12): 1719-36. doi: 10.1517/14656566.2012.703651 PMID: 22775553
  14. Ahmad SS, Rahi M, Ranjan V, Sharma A. Mefloquine as a prophylaxis for malaria needs to be revisited. Int J Parasitol Drugs Drug Resist 2021; 17: 23-6. doi: 10.1016/j.ijpddr.2021.06.003 PMID: 34339933
  15. Chaccour CJ, Kobylinski KC, Bassat Q, et al. Ivermectin to reduce malaria transmission: A research agenda for a promising new tool for elimination. Malar J 2013; 12(1): 153. doi: 10.1186/1475-2875-12-153 PMID: 23647969
  16. Chaccour C, Hammann F, Rabinovich NR. Ivermectin to reduce malaria transmission I. Pharmacokinetic and pharmacodynamic considerations regarding efficacy and safety. Malar J 2017; 16(1): 161. doi: 10.1186/s12936-017-1801-4 PMID: 28434401
  17. Chaccour CJ, Rabinovich NR, Slater H, et al. Establishment of the ivermectin research for malaria elimination network: Updating the research agenda. Malar J 2015; 14(1): 243. doi: 10.1186/s12936-015-0691-6 PMID: 26068560
  18. Foy BD, Kobylinski KC, Silva IM, Rasgon JL, Sylla M. Endectocides for malaria control. Trends Parasitol 2011; 27(10): 423-8. doi: 10.1016/j.pt.2011.05.007 PMID: 21727027
  19. Alout H, Krajacich BJ, Meyers JI, et al. Evaluation of ivermectin mass drug administration for malaria transmission control across different West African environments. Malar J 2014; 13(1): 417. doi: 10.1186/1475-2875-13-417 PMID: 25363349
  20. Naz S, Maqbool A, Ahmad MUD, Anjum AA, Zaman S. Efficacy of ivermectin for control of zoophilic malaria vectors in Pakistan. Pak J Zool 2013; 45: 1585-91.
  21. Mbeye NM, ter Kuile FO, Davies MA, Phiri KS, Egger M, Wandeler G. Cotrimoxazole prophylactic treatment prevents malaria in children in sub-Saharan Africa: Systematic review and meta-analysis. Trop Med Int Health 2014; 19(9): 1057-67. doi: 10.1111/tmi.12352 PMID: 25039469
  22. Sulyok M, Rückle T, Roth A, et al. DSM265 for Plasmodium falciparum chemoprophylaxis: A randomised, double blinded, phase 1 trial with controlled human malaria infection. Lancet Infect Dis 2017; 17(6): 636-44. doi: 10.1016/S1473-3099(17)30139-1 PMID: 28363637
  23. Longley RJ, Salman AM, Cottingham MG, et al. Comparative assessment of vaccine vectors encoding ten malaria antigens identifies two protective liver-stage candidates. Sci Rep 2015; 5(1): 11820. doi: 10.1038/srep11820 PMID: 26139288
  24. Hermand P, Cicéron L, Pionneau C, Vaquero C, Combadière C, Deterre P. Plasmodium falciparum proteins involved in cytoadherence of infected erythrocytes to chemokine CX3CL1. Sci Rep 2016; 6(1): 33786. doi: 10.1038/srep33786 PMID: 27653778
  25. Bennett JW, Yadava A, Tosh D, et al. Phase 1/2a trial of Plasmodium vivax malaria vaccine candidate vmp001/AS01B in malaria-naïve adults: Adults: safety, immunogenicity, and efficacy. PLoS Negl Trop Dis 2016; 10(2): e0004423. doi: 10.1371/journal.pntd.0004423 PMID: 26919472
  26. Pehrson C, Salanti A, Theander TG, Nielsen MA. Pre-clinical and clinical development of the first placental malaria vaccine. Expert Rev Vaccines 2017; 16(6): 613-24. doi: 10.1080/14760584.2017.1322512 PMID: 28434376
  27. Coelho CH, Doritchamou JYA, Zaidi I, Duffy PE. Advances in malaria vaccine development: Report from the 2017 malaria vaccine symposium. NPJ Vaccines 2017; 2(1): 34. doi: 10.1038/s41541-017-0035-3 PMID: 29522056
  28. Draper SJ, Sack BK, King CR, et al. Malaria vaccines: Recent advances and new horizons. Cell Host Microbe 2018; 24(1): 43-56. doi: 10.1016/j.chom.2018.06.008 PMID: 30001524
  29. Toh SQ, Glanfield A, Gobert GN, Jones MK. Heme and blood-feeding parasites: Friends or foes? Parasit Vectors 2010; 3(1): 108. doi: 10.1186/1756-3305-3-108 PMID: 21087517
  30. Chikezie PC, Okpara RT. Serum lipid profile and hepatic dysfunction in moderate Plasmodium falciparum infection. J Public Health Epidemiol 2013; 5: 379-84.
  31. Su Z, Segura M, Morgan K, Loredo-Osti JC, Stevenson MM. Impairment of protective immunity to blood-stage malaria by concurrent nematode infection. Infect Immun 2005; 73(6): 3531-9. doi: 10.1128/IAI.73.6.3531-3539.2005 PMID: 15908382
  32. Maina RN, Walsh D, Gaddy C, et al. Impact of Plasmodium falciparum infection on haematological parameters in children living in Western Kenya. Malar J 2010; 9(S3) (Suppl. 3): S4. doi: 10.1186/1475-2875-9-S3-S4 PMID: 21144084
  33. Akanbi OM. The influence of malaria infection on kidney and liver function in children in Akoko area of Ondo state, Nigeria. J Parasit Vector Biol 2015; 7(8): 163-8. doi: 10.5897/JPVB2015.0200
  34. Beamer N, Coull BM, Sexton G, de Garmo P, Knox R, Seaman G. Fibrinogen and the albumin-globulin ratio in recurrent stroke. Stroke 1993; 24(8): 1133-9. doi: 10.1161/01.STR.24.8.1133 PMID: 8342186
  35. Li K, Fu W, Bo Y, Zhu Y. Effect of albumin-globulin score and albumin to globulin ratio on survival in patients with heart failure: A retrospective cohort study in China. BMJ Open 2018; 8(7): e022960. doi: 10.1136/bmjopen-2018-022960 PMID: 29982222
  36. Lv G, An L, Sun X, Hu Y, Sun D. Pretreatment albumin to globulin ratio can serve as a prognostic marker in human cancers: A meta-analysis. Clin Chim Acta 2018; 476: 81-91. doi: 10.1016/j.cca.2017.11.019 PMID: 29170102
  37. Wu PP, Hsieh YP, Kor CT, Chiu PF. Association between albumin-globulin ratio and mortality in patients with chronic kidney disease. J Clin Med 2019; 8(11): 1991. doi: 10.3390/jcm8111991 PMID: 31731708
  38. Peng F, Sun L, Chen T, et al. Albumin-globulin ratio and mortality in patients on peritoneal dialysis: A retrospective study. BMC Nephrol 2020; 21(1): 51. doi: 10.1186/s12882-020-1707-1 PMID: 32059708
  39. Zhang J, Wang T, Fang Y. Clinical significance of serum albumin/globulin ratio in patients with pyogenic liver abscess. Front Surg 2021; 30(8): 677799. doi: 10.3389/fsurg.2021.677799 PMID: 34917645
  40. Rajapurkar MM. Renal involvement in malaria. J Postgrad Med 1994; 40(3): 132-4. PMID: 8699378
  41. Abdagalil MA, ElBagir NM. Effect of falciparum malaria on some plasma proteins in males: With special reference to the levels of testosterone and cortisol. Afr J Biochem Res 2009; 3(11): 349-55.
  42. Elsheikha HM, Sheashaa HA. Epidemiology, pathophysiology, management and outcome of renal dysfunction associated with plasmodia infection. Parasitol Res 2007; 101(5): 1183-90. doi: 10.1007/s00436-007-0650-4 PMID: 17628830
  43. Barsoum RS. Malarial acute renal failure. J Am Soc Nephrol 2000; 11(11): 2147-54. doi: 10.1681/ASN.V11112147 PMID: 11053494
  44. Dondorp A, Nosten F, Stepniewska K, Day N, White N. Artesunate versus quinine for treatment of severe falciparum malaria: A randomised trial. Lancet 2005; 366(9487): 717-25. doi: 10.1016/S0140-6736(05)67176-0 PMID: 16125588
  45. von Seidlein L, Olaosebikan R, Hendriksen ICE, et al. Predicting the clinical outcome of severe falciparum malaria in african children: Findings from a large randomized trial. Clin Infect Dis 2012; 54(8): 1080-90. doi: 10.1093/cid/cis034 PMID: 22412067
  46. Trang TTM, Phu NH, Vinh H, et al. Acute renal failure in patients with severe falciparum malaria. Clin Infect Dis 1992; 15(5): 874-80. doi: 10.1093/clind/15.5.874 PMID: 1445988
  47. Hanson J, Hasan MMU, Royakkers AA, et al. Laboratory prediction of the requirement for renal replacement in acute falciparum malaria. Malar J 2011; 10(1): 217. doi: 10.1186/1475-2875-10-217 PMID: 21813009
  48. Koopmans LC, van Wolfswinkel ME, Hesselink DA, et al. Acute kidney injury in imported Plasmodium falciparum malaria. Malar J 2015; 14(1): 523. doi: 10.1186/s12936-015-1057-9 PMID: 26702815
  49. van Wolfswinkel ME, Koopmans LC, Hesselink DA, et al. Neutrophil gelatinase-associated lipocalin (NGAL) predicts the occurrence of malaria-induced acute kidney injury. Malar J 2016; 15(1): 464. doi: 10.1186/s12936-016-1516-y PMID: 27612570
  50. White NJ. Anaemia and malaria. Malar J 2018; 17(1): 371. doi: 10.1186/s12936-018-2509-9 PMID: 30340592
  51. McKenzie FE, Prudhomme WA, Magill AJ, et al. White blood cell counts and malaria. J Infect Dis 2005; 192(2): 323-30. doi: 10.1086/431152 PMID: 15962228
  52. Elhassan IM, Theander TG, Hviid L, et al. Evidence of endothelial inflammation, T cell activation, and T cell reallocation in uncomplicated Plasmodium falciparum malaria. Am J Trop Med Hyg 1994; 51(3): 372-9. doi: 10.4269/ajtmh.1994.51.372 PMID: 7524374
  53. Hviid L, Kurtzhals JA, Goka BQ, Oliver-Commey JO, Nkrumah FK, Theander TG. Rapid reemergence of T cells into peripheral circulation following treatment of severe and uncomplicated Plasmodium falciparum malaria. Infect Immun 1997; 65(10): 4090-3. doi: 10.1128/iai.65.10.4090-4093.1997 PMID: 9317012
  54. Plewes K, Kingston HWF, Ghose A, et al. Acetaminophen as a renoprotective adjunctive treatment in patients with severe and moderately severe falciparum malaria: A randomized, controlled, open-label trial. Clin Infect Dis 2018; 67(7): 991-9. doi: 10.1093/cid/ciy213 PMID: 29538635
  55. Enato IG, Odunvbun ME. Uptake and usage of proguanil as malaria chemoprophylaxis and the socio-economic determinants of proguanil usage in children with sickle cell anemia in Benin City. Niger J Clin Pract 2022; 25(6): 903-8. doi: 10.4103/njcp.njcp_1938_21 PMID: 35708432
  56. Agyeman YN, Newton S, Annor RB, Owusu-Dabo E. Intermittent preventive treatment comparing two versus three doses of sulphadoxine pyrimethamine (IPTp-SP) in the prevention of anaemia in pregnancy in Ghana: A cross-sectional study. PLoS One 2021; 16(4): e0250350. doi: 10.1371/journal.pone.0250350 PMID: 33878140
  57. Wilson NO, Ceesay FK, Gyasi RK, et al. Intermittent preventive treatment with sulfadoxine-pyrimethamine against malaria and anemia in pregnant women. Am J Trop Med Hyg 2011; 85(1): 12-21. doi: 10.4269/ajtmh.2011.10-0512 PMID: 21734118
  58. Amimo F, Lambert B, Magit A, Sacarlal J, Hashizume M, Shibuya K. Plasmodium falciparum resistance to sulfadoxine-pyrimethamine in Africa: A systematic analysis of national trends. BMJ Glob Health 2020; 5(11): e003217. doi: 10.1136/bmjgh-2020-003217 PMID: 33214174
  59. Amenga-Etego LN, Asoala V, Agongo G, et al. Temporal evolution of sulfadoxine-pyrimethamine resistance genotypes and genetic diversity in response to a decade of increased interventions against Plasmodium falciparum in northern Ghana. Malar J 2021; 20(1): 152. doi: 10.1186/s12936-021-03693-3 PMID: 33731134
  60. Mulenga M, Malunga F, Bennett S, et al. A randomised, double-blind, placebo-controlled trial of atovaquone?proguanil vs. sulphadoxine?pyrimethamine in the treatment of malarial anaemia in Zambian children. Trop Med Int Health 2006; 11(11): 1643-52. doi: 10.1111/j.1365-3156.2006.01726.x PMID: 17054743
  61. Enato IG, Israel-Aina YT. Proguanil as malaria chemoprophylaxis in sickle cell anaemia: The controversies, problems and the future: A narrative of literature. Niger J Paediatr 2021; 48(3)
  62. Bi X, Wang L, Zhang W, et al. The pretreatment albumin to globulin ratio predicts survival in patients with natural killer/T-cell lymphoma. PeerJ 2016; 4: e1742. doi: 10.7717/peerj.1742 PMID: 26966671
  63. Fernandez P, Wallace D, Ryan K, Lin Q, Hollister A. Effects of oral ketoconazole on renal function in healthy volunteers. Clin Pharmacol Ther 2005; 77(2): P81. doi: 10.1016/j.clpt.2004.12.202
  64. Rodrigues JC, Bargman JM. Antimalarial drugs for the prevention of chronic kidney disease in patients with rheumatoid arthritis. Clin J Am Soc Nephrol 2018; 13(5): 679-80. doi: 10.2215/CJN.03300318 PMID: 29661771
  65. Bai L, Li J, Li H, et al. Renoprotective effects of artemisinin and hydroxychloroquine combination therapy on IgA nephropathy via suppressing NF-κB signaling and NLRP3 inflammasome activation by exosomes in rats. Biochem Pharmacol 2019; 169: 113619. doi: 10.1016/j.bcp.2019.08.021 PMID: 31465776
  66. Tiffert T, Ginsburg H, Krugliak M, Elford BC, Lew VL. Potent antimalarial activity of clotrimazole in in vitro cultures of Plasmodium falciparum. Proc Natl Acad Sci 2000; 97(1): 331-6. doi: 10.1073/pnas.97.1.331 PMID: 10618418
  67. Rodrigues JR, Lourenco D, Gamboa N. Disturbance in hemoglobin metabolism and in vivo antimalarial activity of azole antimycotics. Rev Inst Med Trop São Paulo 2011; 53(1): 25-9. doi: 10.1590/S0036-46652011000100005 PMID: 21412616
  68. Borhade V, Pathak S, Sharma S, Patravale V. Clotrimazole nanoemulsion for malaria chemotherapy. Part I: Preformulation studies, formulation design and physicochemical evaluation. Int J Pharm 2012; 431(1-2): 138-48. doi: 10.1016/j.ijpharm.2011.12.040 PMID: 22227344
  69. Awasthi A, Dutta GP, Bhakuni V, Tripathi R. Resistance reversal action of ketoconazole against mefloquine resistance of Plasmodium yoelii nigeriensis. Exp Parasitol 2004; 107(3-4): 115-9. doi: 10.1016/j.exppara.2004.06.001 PMID: 15363936
  70. Ridtitid W, Wongnawa M, Mahatthanatrakul W, Raungsri N, Sunbhanich M. Ketoconazole increases plasma concentrations of antimalarial mefloquine in healthy human volunteers. J Clin Pharm Ther 2005; 30(3): 285-90. doi: 10.1111/j.1365-2710.2005.00651.x PMID: 15896247
  71. Schlagenhauf P, Adamcova M, Regep L, Schaerer MT, Rhein HG. The position of mefloquine as a 21st century malaria chemoprophylaxis. Malar J 2010; 9(1): 357. doi: 10.1186/1475-2875-9-357 PMID: 21143906
  72. Tripathi R, Rizvi A, Pandey SK, Dwivedi H, Saxena JK. Ketoconazole, a cytochrome P450 inhibitor can potentiate the antimalarial action of α/β arteether against MDR Plasmodium yoelii nigeriensis. Acta Trop 2013; 126(2): 150-5. doi: 10.1016/j.actatropica.2013.01.012 PMID: 23391499
  73. Chandra R, Puri SK. Arteether resistance reversal by ketoconazole/fluconazole in rodent malaria parasite Plasmodium vinckei. Parasitol Res 2015; 114(3): 1239-43. doi: 10.1007/s00436-015-4321-6 PMID: 25616344
  74. National Institute of Health/National Research Council.Guide for the care and use of laboratory animals. (8th..), 1996.
  75. Peters W. Drug resistance in Plasmodium berghei Vincke and Lips I Chloroquine resistance Experim Parasit emphas 1948; 17(1): 80-9.
  76. Busher JT. Serum albumin and globulin. Clinical Methods: The History, Physical, and Laboratory Examinations. (3rd ed..), Boston: Butterworths 1990. Available from: https://www.ncbi.nlm.nih.gov/books/NBK204/
  77. Verma A, Joshi S, Singh D. Imidazole: Having versatile biological activities. J Chem 2013; 2013: 1-12. doi: 10.1155/2013/329412
  78. Mishra LC, Bhattacharya A, Bhasin VK. Antiplasmodial interactions between artemisinin and triclosan or ketoconazole combinations against blood stages of Plasmodium falciparum in vitro. Am J Trop Med Hyg 2007; 76(3): 497-501. doi: 10.4269/ajtmh.2007.76.497 PMID: 17360874
  79. Tizifa TA, Kabaghe AN, McCann RS, van den Berg H, Van Vugt M, Phiri KS. Prevention efforts for malaria. Curr Trop Med Rep 2018; 5(1): 41-50. doi: 10.1007/s40475-018-0133-y PMID: 29629252
  80. Goldberg DE, Slater AF, Cerami A, Henderson GB. Hemoglobin degradation in the malaria parasite Plasmodium falciparum: An ordered process in a unique organelle. Proc Natl Acad Sci 1990; 87(8): 2931-5. doi: 10.1073/pnas.87.8.2931 PMID: 2183218
  81. Bendrat K, Berger BJ, Cerami A. Haem polymerization in malaria. Nature 1995; 378(6553): 138-9. doi: 10.1038/378138a0 PMID: 7477315
  82. Huy NT, Kamei K, Yamamoto T, et al. Clotrimazole binds to heme and enhances heme-dependent hemolysis: Proposed antimalarial mechanism of clotrimazole. J Biol Chem 2002; 277(6): 4152-8. doi: 10.1074/jbc.M107285200 PMID: 11707446
  83. Al-Salahy M, Shnawa B, Abed G, Mandour A, Al-Ezzi A. Parasitaemia and its relation to hematological parameters and liver function among patients malaria in abs, hajjah, northwest yemen. Interdiscip Perspect Infect Dis 2016; 2016: 1-5. doi: 10.1155/2016/5954394 PMID: 27051422
  84. Janssen PAJ, Symoens JE. Hepatic reactions during ketoconazole treatment. Am J Med 1983; 74(1): 80-5. doi: 10.1016/0002-9343(83)90519-3 PMID: 6129799
  85. Lewis JH, Zimmerman HJ, Benson GD, Ishak KG. Hepatic injury associated with ketoconazole therapy. Analysis of 33 cases. Gastroenterology 1984; 86(3): 503-13. doi: 10.1016/S0016-5085(84)80021-9 PMID: 6319220
  86. García Rodríguez LA, Duque A, Castellsague J, Pérez-Gutthann S, Stricker BH. A cohort study on the risk of acute liver injury among users of ketoconazole and other antifungal drugs. Br J Clin Pharmacol 1999; 48(6): 847-52. doi: 10.1046/j.1365-2125.1999.00095.x PMID: 10594489
  87. Stricker BHC, Blok APR, Bronkhorst FB, Van Parys GE, Desmet VJ. Ketoconazole-associated hepatic injury. J Hepatol 1986; 3(3): 399-406. doi: 10.1016/S0168-8278(86)80495-0 PMID: 3559147
  88. Lake-Bakaar G, Scheuer PJ, Sherlock S. Hepatic reactions associated with ketoconazole in the United Kingdom. BMJ 1987; 294(6569): 419-22. doi: 10.1136/bmj.294.6569.419 PMID: 3101906
  89. Young J. Hepatic safety of ketoconazole in cushing’s syndrome: Results of a compassionate use programme in france. Europ J Endocrinol 2018; 178(5): 447-58. doi: 10.1530/EJE-17-0886
  90. Ataseven B, du Bois A, Reinthaller A, et al. Pre-operative serum albumin is associated with post-operative complication rate and overall survival in patients with epithelial ovarian cancer undergoing cytoreductive surgery. Gynecol Oncol 2015; 138(3): 560-5. doi: 10.1016/j.ygyno.2015.07.005 PMID: 26163893
  91. Jiang H, Li H, Li A, et al. Preoperative combined hemoglobin, albumin, lymphocyte and platelet levels predict survival in patients with locally advanced colorectal cancer. Oncotarget 2016; 7(44): 72076-83. doi: 10.18632/oncotarget.12271 PMID: 27765916
  92. Chiang JM, Chang CJ, Jiang SF, et al. Pre-operative serum albumin level substantially predicts post-operative morbidity and mortality among patients with colorectal cancer who undergo elective colectomy. Eur J Cancer Care 2017; 26(2): e12403. doi: 10.1111/ecc.12403 PMID: 26526411
  93. Adebisi SA, Soladoye AQ, Adekoya D, Odunkanmi OA. Serum protein fractions of Nigerians with plasmodium infections: Ilorin experience. Afr J Clin Expe Microb 1998; 3(20): 82-4.
  94. Adeosun OG, Oduola T, Akanji BO, Sunday AM, Udoh SJ, Bello IS. Biochemical alteration in Nigerian children with acute falciparum malaria. Afr J Biotechnol 2007; 6(7): 881-5.
  95. Matsuda Y, Ogushi F, Ogawa K, Katunuma N. Structure and properties of albumin Tokushima and its proteolytic processing by cathepsin B in vitro. J Biochem 1986; 100(2): 375-9. doi: 10.1093/oxfordjournals.jbchem.a121724 PMID: 3782057
  96. Amah UK, Ahaneku JE, Usoro CA, et al. Comparative study of C-reactive protein and other biochemical parameters in patients with hepatitis B and malaria in Calabar, Nigeria. Niger J Physiol Sci 2011; 26(1): 109-12. PMID: 22314997
  97. Obimba KC, Eziuzor CS. Comparative biochemical and hematological analyses of malaria patients and normal human subjects of the Federal Medical Centre Owerri, Nigeria. Int J Med Adv Disc 2015; 2(1): 32-40.
  98. Schäfer-Korting M, Korting HC, Amann F, Peuser R, Lukacs A. Influence of albumin on itraconazole and ketoconazole antifungal activity: Results of a dynamic in vitro study. Antimicrob Agents Chemother 1991; 35(10): 2053-6. doi: 10.1128/AAC.35.10.2053 PMID: 1662022
  99. Xia M, Liu D, Liu Y, Liu H. The therapeutic effect of artemisinin and its derivatives in kidney disease. Front Pharmacol 2020; 11: 380. doi: 10.3389/fphar.2020.00380 PMID: 32296335
  100. Feng H, Wu T, Zhou Q, et al. Protective effect and possible mechanisms of artemisinin and its derivatives for diabetic nephropathy: A systematic review and meta-analysis in animal models. Oxid Med Cell Longev 2022; 2022: 5401760. doi: 10.1155/2022/5401760
  101. Nadeem M, Ali N, Qamar MA. Hematological findings in acute malarial infection list of authors along with highest qualification and institute. Biomedica 2002; 18: 62-5.
  102. George OI, Ewelike-Ezeani CS. Haematological changes in children with malaria infection in Nigeria. J Med Med Sci 2011; 2(4): 768-71.
  103. Goselle ON, Onwuliri COE, Onwuliri VA. Malaria infection in HIV/AIDS patients and its correlation with packed cell volume (PCV). J Vector Borne Dis 2009; 46(3): 205-11. PMID: 19724084
  104. Fleming AF, Ghatoura GBS, Harrison KA, Briggs ND, Dunn DT. The prevention of anaemia in pregnancy in primigravidae in the guinea savanna of Nigeria. Ann Trop Med Parasitol 1986; 80(2): 211-33. doi: 10.1080/00034983.1986.11812006 PMID: 3530158
  105. Fleming A. Antimalarial prophylaxis in pregnant Nigerian women. Lancet 1990; 335(8680): 45. doi: 10.1016/0140-6736(90)90167-4 PMID: 1967344
  106. Luzzi GA, Peto TEA. Adverse effects of antimalarials. An update. Drug Saf 1993; 8(4): 295-311. doi: 10.2165/00002018-199308040-00004 PMID: 8481216
  107. Vallely A, Vallely L, Changalucha J, Greenwood B, Chandramohan D. Intermittent preventive treatment for malaria in pregnancy in Africa: What’s new, what’s needed? Malar J 2007; 6(1): 16. doi: 10.1186/1475-2875-6-16 PMID: 17306014
  108. Lasisi A, Abdus-salam R, Badejoko O, Adeyemi A, Loto O. Comparative study of proguanil and sulphadoxine–pyrimethamine in the prevention of malaria in pregnancy. Trop J Obstet Gynaecol 2018; 35(1): 73-8. doi: 10.4103/TJOG.TJOG_1_18
  109. Koltas IS, Demirhindi H, Hazar S, Ozcan K. Supportive presumptive diagnosis of Plasmodium vivax malaria. Thrombocytopenia and red cell distribution width. Saudi Med J 2007; 28(4): 535-9. PMID: 17457473
  110. Chandra S, Chandra H. Role of haematological parameters as an indicator of acute malarial infection in uttarakhand state of India. Mediterr J Hematol Infect Dis 2013; 5(1): e2013009. doi: 10.4084/mjhid.2013.009 PMID: 23350022
  111. Baquerizo Nole KL, Lee E, Villada G, Romanelli P, Paolo R. Ketoconazole-induced Sweet syndrome: A new association. Am J Dermatopathol 2015; 37(5): 419-22. doi: 10.1097/DAD.0000000000000252 PMID: 25590289
  112. Kayode OT, Kayode AAA, Awonuga OO. Status of selected hematological and biochemical parameters in malaria and malaria-typhoid co-infection. J Biol Sci 2011; 11(5): 367-73. doi: 10.3923/jbs.2011.367.373
  113. Wickramasinghe SN, Abdalla SH. Blood and bone marrow changes in malaria. Best Pract Res Clin Haematol 2000; 13(2): 277-99. doi: 10.1053/beha.1999.0072 PMID: 10942626
  114. Lathia TB, Joshi R. Can hematological parameters discriminate malaria from nonmalarious acute febrile illness in the tropics? Indian J Med Sci 2004; 58(6): 239-44. PMID: 15226575
  115. Malik AM, Zaffar N, Ali N, Malik AM, Khan R. Haematological findings and endemicity of malaria in Gadap region. J Coll Physicians Surg Pak 2010; 20(2): 112-6. PMID: 20378039

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers