Recent Developments of Hybrid Fluorescence Techniques: Advances in Amyloid Detection Methods


Цитировать

Полный текст

Аннотация

:Amyloid fibrils are formed from various pathological proteins. Monitoring their aggregation process is necessary for early detection and treatment. Among the available detection techniques, fluorescence is simple, intuitive, and convenient due to its sensitive and selective mode of detection. It has certain disadvantages like poor photothermal stability and detection state limitation. Research has focused on minimising the limitation by developing hybrid fluorescence techniques. This review focuses on the two ways fluorescence (intrinsic and extrinsic) has been used to monitor amyloid fibrils. In intrinsic/label free fluorescence: i) The fluorescence emission through aromatic amino acid residues like phenylalanine (F), tyrosine (Y) and tryptophan (W) is present in amyloidogenic peptides/protein sequence. And ii) The structural changes from alpha helix to cross-β-sheet structures during amyloid formation contribute to the fluorescence emission. The second method focuses on the use of extrinsic fluorophores to monitor amyloid fibrils i) organic dyes/small molecules, ii) fluorescent tagged proteins, iii) nanoparticles, iv) metal complexes and v) conjugated polymers. All these fluorophores have their own limitations. Developing them into hybrid fluorescence techniques and converting it into biosensors can contribute to early detection of disease.

Об авторах

Miraclin A.

School of Biosciences and Technology, VIT, Centre for Bio Separation Technology (CBST)

Email: info@benthamscience.net

Priyankar Sen

School of Biosciences and Technology, VIT,, Centre for Bio Separation Technology (CBST)

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Lee, C.C.; Nayak, A.; Sethuraman, A.; Belfort, G.; McRae, G.J. A three-stage kinetic model of amyloid fibrillation. Biophys. J., 2007, 92(10), 3448-3458. doi: 10.1529/biophysj.106.098608 PMID: 17325005
  2. Siddiqi, M.K.; Alam, P.; Chaturvedi, S.K.; Shahein, Y.E.; Khan, R.H. Mechanisms of protein aggregation and inhibition. Front. Biosci., 2017, 9(1), 1-20. PMID: 27814585
  3. Sulatsky, M.I.; Stepanenko, O.V.; Stepanenko, O.V.; Mikhailova, E.V.; Kuznetsova, I.M.; Turoverov, K.K.; Sulatskaya, A.I. Amyloid fibrils degradation: the pathway to recovery or aggravation of the disease? Front. Mol. Biosci., 2023, 10, 1208059. doi: 10.3389/fmolb.2023.1208059 PMID: 37377863
  4. Makin, O.S.; Atkins, E.; Sikorski, P.; Johansson, J.; Serpell, L.C. Molecular basis for amyloid fibril formation and stability. Proc. Natl. Acad. Sci. USA, 2005, 102(2), 315-320. doi: 10.1073/pnas.0406847102 PMID: 15630094
  5. Rambaran, R.N.; Serpell, L.C. Amyloid fibrils. Prion, 2008, 2(3), 112-117. doi: 10.4161/pri.2.3.7488 PMID: 19158505
  6. Lee, J.C. Diagnosis of Alzheimer’s disease utilizing amyloid and tau as fluid biomarker. Exp. Mol. Med., 2019, 51, 1-10. doi: 10.1038/s12276-019-0299-y
  7. Castiglione, V.; Franzini, M.; Aimo, A.; Carecci, A.; Lombardi, C.M.; Passino, C.; Rapezzi, C.; Emdin, M.; Vergaro, G. Use of biomarkers to diagnose and manage cardiac amyloidosis. Eur. J. Heart Fail., 2021, 23(2), 217-230. doi: 10.1002/ejhf.2113 PMID: 33527656
  8. Zheng, X.; Xu, Z.; Li, H.; Fu, H. A sensitive probe for amyloid fibril detection with strong fluorescence and early response. RSC Advances, 2018, 8(29), 15870-15875. doi: 10.1039/C8RA00751A PMID: 35542196
  9. Cliff, I. Stains and Indraneel Ghosh, When conjugated polymers meet amyloid fibrils. ASC Chem. Biol., 2007, 2(8), 525-528.
  10. Ma, S.; Chen, G.; Xu, J.; Liu, Y.; Li, G.; Chen, T.; Li, Y.; James, T.D. Current strategies for the development of fluorescence-based molecular probes for visualizing the enzymes and proteins associated with Alzheimer’s disease. Coord. Chem. Rev., 2021, 427(213553), 213553. doi: 10.1016/j.ccr.2020.213553
  11. Ren, W.; Li, L.; Zhang, J.; Vaas, M.; Klohs, J.; Ripoll, J.; Wolf, M.; Ni, R.; Rudin, M. Non-invasive visualization of amyloid-beta deposits in Alzheimer amyloidosis mice using magnetic resonance imaging and fluorescence molecular tomography. Biomed. Opt. Express, 2022, 13(7), 3809-3822. doi: 10.1364/BOE.458290 PMID: 35991935
  12. Zhou, J. Fluorescent diagnostic probes in neurodegenerative disease. Adv. Mater., 2020, 2001945, 1-43.
  13. Schouw, HM Targeted optical fluorescence imaging: a meta-narrative review and future perspectives. Eur. J. Nucl. Med. Mol. Imaging., 2021, 48(13), 4272-4292.
  14. Das, A.; Dutta, T.; Gadhe, L.; Koner, A.L.; Saraogi, I. Biocompatible fluorescent probe for the selective detection of amyloid fibrils. Anal. Chem., 2020, 92(15), 10336-10341. doi: 10.1021/acs.analchem.0c00379 PMID: 32635722
  15. Diaz-Garcia , M.E.; Laino, R.B. Fluorescence Overview. Encyclo. Analyt. Sci., 2019, 3(3), 309-319.
  16. dos Santos Rodrigues, F.H. Applications of fluorescence spectroscopy in protein conformational changes and intermolecular contacts. BBA Advances, 2023, 3, 1-13.
  17. Bose, Aswathy Fluorescence spectroscopy and its applications: A Review. Int. J. Adv. Pharm. Anal., 2018, 8(1), 1-8.
  18. Sharma, B.K. Instrumental methods of chemical analysis, 25th ed; Krishna Prakashan Media: Meerut, India, 2005.
  19. Kakkar, Saloni Progress in fluorescence biosensing and food safety towards point-of-detection (PoD) system. Biosensors., 2023, 13(2), 249.
  20. Jung, H.S.; Verwilst, P.; Kim, W.Y.; Kim, J.S. Fluorescent and colorimetric sensors for the detection of humidity or water content. Chem. Soc. Rev., 2016, 45(5), 1242-1256. doi: 10.1039/C5CS00494B PMID: 26766615
  21. Zhang, X.; Hu, Y.; Yang, X.; Tang, Y.; Han, S.; Kang, A.; Deng, H.; Chi, Y.; Zhu, D.; Lu, Y. Förster resonance energy transfer (FRET)-based biosensors for biological applications. Biosens. Bioelectron., 2019, 138, 111314. doi: 10.1016/j.bios.2019.05.019
  22. Challa, P.K.; Peter, Q.; Wright, M.A.; Zhang, Y.; Saar, K.L.; Carozza, J.A.; Benesch, J.L.P.; Knowles, T.P.J. Real-Time Intrinsic fluorescence visualization and sizing of proteins and protein complexes in microfluidic devices. Anal. Chem., 2018, 90(6), 3849-3855. doi: 10.1021/acs.analchem.7b04523 PMID: 29451779
  23. Bekard, I.B.; Dunstan, D.E. Tyrosine autofluorescence as a measure of bovine insulin fibrillation. Biophys. J., 2009, 97(9), 2521-2531. doi: 10.1016/j.bpj.2009.07.064 PMID: 19883595
  24. Zhuang, X.; Ha, T.; Kim, H.D.; Centner, T.; Labeit, S.; Chu, S. Fluorescence quenching: A tool for single-molecule protein-folding study. Proc. Natl. Acad. Sci. USA, 2000, 97(26), 14241-14244. doi: 10.1073/pnas.97.26.14241 PMID: 11121030
  25. Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer: New York, NY, 2006.
  26. Marcelo, H. Gehlen, The centenary of the Stern-Volmer equation of fluorescence quenching: From the single line plot to the SV quenching map. J. Photochem. Photobiol. Photochem. Rev., 2020, 42, 1-14.
  27. Kang, J.; Lemaire, H.G.; Unterbeck, A.; Salbaum, J.M.; Masters, C.L.; Grzeschik,, K.H.; Multhaup, G.; Beyreuther, K.; Hill, B.M The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature., 1987, 325(6106), 733-736.
  28. Cerofolini, L.; Ravera, E.; Bologna, S.; Wiglenda, T.; Böddrich, A.; Purfürst, B.; Benilova, I.; Korsak, M.; Gallo, G.; Rizzo, D.; Gonnelli, L.; Fragai, M.; De Strooper, B.; Wanker, E.E.; Luchinat, C. Mixing Aβ(1–40) and Aβ(1–42) peptides generates unique amyloid fibrils. Chem. Commun. (Camb.), 2020, 56(62), 8830-8833. doi: 10.1039/D0CC02463E PMID: 32749391
  29. Greenberg, B.D.; Bencen, G.H.; Seilhamer, J.J.; Lewicki, J.A.; Fiddes, J.C. Nucleotide sequence of the gene encoding human atrial natriuretic factor precursor. Nature, 1984, 312(5995), 656-658. doi: 10.1038/312656a0 PMID: 6095119
  30. Gibbs, R.A.; Weinstock, G.M.; Metzker, M.L.; Muzny, D.M.; Sodergren, E.J.; Scherer, S.; Scott, G.; Steffen, D.; Worley, K.C.; Burch, P.E.; Okwuonu, G.; Hines, S.; Lewis, L.; DeRamo, C.; Delgado, O.; Dugan-Rocha, S.; Miner, G.; Morgan, M.; Hawes, A.; Gill, R.; Holt, C.R.A.; Adams, M.D.; Amanatides, P.G.; Baden-Tillson, H.; Barnstead, M.; Chin, S.; Evans, C.A.; Ferriera, S.; Fosler, C.; Glodek, A.; Gu, Z.; Jennings, D.; Kraft, C.L.; Nguyen, T.; Pfannkoch, C.M.; Sitter, C.; Sutton, G.G.; Venter, J.C.; Woodage, T.; Smith, D.; Lee, H-M.; Gustafson, E.; Cahill, P.; Kana, A.; Doucette-Stamm, L.; Weinstock, K.; Fechtel, K.; Weiss, R.B.; Dunn, D.M.; Green, E.D.; Blakesley, R.W.; Bouffard, G.G.; de Jong, P.J.; Osoegawa, K.; Zhu, B.; Marra, M.; Schein, J.; Bosdet, I.; Fjell, C.; Jones, S.; Krzywinski, M.; Mathewson, C.; Siddiqui, A.; Wye, N.; McPherson, J.; Zhao, S.; Fraser, C.M.; Shetty, J.; Shatsman, S.; Geer, K.; Chen, Y.; Abramzon, S.; Nierman, W.C.; Gibbs, R.A.; Weinstock, G.M.; Havlak, P.H.; Chen, R.; James Durbin, K.; Simons, R.; Ren, Y.; Song, X-Z.; Li, B.; Liu, Y.; Qin, X.; Cawley, S.; Weinstock, G.M.; Worley, K.C.; Cooney, A.J.; Gibbs, R.A.; D’Souza, L.M.; Martin, K.; Qian Wu, J.; Gonzalez-Garay, M.L.; Jackson, A.R.; Kalafus, K.J.; McLeod, M.P.; Milosavljevic, A.; Virk, D.; Volkov, A.; Wheeler, D.A.; Zhang, Z.; Bailey, J.A.; Eichler, E.E.; Tuzun, E.; Birney, E.; Mongin, E.; Ureta-Vidal, A.; Woodwark, C.; Zdobnov, E.; Bork, P.; Suyama, M.; Torrents, D.; Alexandersson, M.; Trask, B.J.; Young, J.M.; Smith, D.; Huang, H.; Fechtel, K.; Wang, H.; Xing, H.; Weinstock, K.; Daniels, S.; Gietzen, D.; Schmidt, J.; Stevens, K.; Vitt, U.; Wingrove, J.; Camara, F.; Mar Albà, M.; Abril, J.F.; Guigo, R.; Smit, A.; Dubchak, I.; Rubin, E.M.; Couronne, O.; Poliakov, A.; Hübner, N.; Ganten, D.; Goesele, C.; Hummel, O.; Kreitler, T.; Lee, Y-A.; Monti, J.; Schulz, H.; Zimdahl, H.; Himmelbauer, H.; Lehrach, H.; Jacob, H.J.; Bromberg, S.; Gullings-Handley, J.; Jensen-Seaman, M.I.; Kwitek, A.E.; Lazar, J.; Pasko, D.; Tonellato, P.J.; Twigger, S.; Ponting, C.P.; Duarte, J.M.; Rice, S.; Goodstadt, L.; Beatson, S.A.; Emes, R.D.; Winter, E.E.; Webber, C.; Brandt, P.; Nyakatura, G.; Adetobi, M.; Chiaromonte, F.; Elnitski, L.; Eswara, P.; Hardison, R.C.; Hou, M.; Kolbe, D.; Makova, K.; Miller, W.; Nekrutenko, A.; Riemer, C.; Schwartz, S.; Taylor, J.; Yang, S.; Zhang, Y.; Lindpaintner, K.; Andrews, T.D.; Caccamo, M.; Clamp, M.; Clarke, L.; Curwen, V.; Durbin, R.; Eyras, E.; Searle, S.M.; Cooper, G.M.; Batzoglou, S.; Brudno, M.; Sidow, A.; Stone, E.A.; Craig Venter, J.; Payseur, B.A.; Bourque, G.; López-Otín, C.; Puente, X.S.; Chakrabarti, K.; Chatterji, S.; Dewey, C.; Pachter, L.; Bray, N.; Yap, V.B.; Caspi, A.; Tesler, G.; Pevzner, P.A.; Haussler, D.; Roskin, K.M.; Baertsch, R.; Clawson, H.; Furey, T.S.; Hinrichs, A.S.; Karolchik, D.; Kent, W.J.; Rosenbloom, K.R.; Trumbower, H.; Weirauch, M.; Cooper, D.N.; Stenson, P.D.; Ma, B.; Brent, M.; Arumugam, M.; Shteynberg, D.; Copley, R.R.; Taylor, M.S.; Riethman, H.; Mudunuri, U.; Peterson, J.; Guyer, M.; Felsenfeld, A.; Old, S.; Mockrin, S.; Collins, F. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature, 2004, 428(6982), 493-521. doi: 10.1038/nature02426 PMID: 15057822
  31. Strausberg, R.L.; Feingold, E.A.; Grouse, L.H.; Derge, J.G.; Klausner, R.D.; Collins, F.S.; Wagner, L.; Shenmen, C.M.; Schuler, G.D.; Altschul, S.F.; Zeeberg, B.; Buetow, K.H.; Schaefer, C.F.; Bhat, N.K.; Hopkins, R.F.; Jordan, H.; Moore, T.; Max, S.I.; Wang, J.; Hsieh, F.; Diatchenko, L.; Marusina, K.; Farmer, A.A.; Rubin, G.M.; Hong, L.; Stapleton, M.; Soares, M.B.; Bonaldo, M.F.; Casavant, T.L.; Scheetz, T.E.; Brownstein, M.J.; Usdin, T.B.; Toshiyuki, S.; Carninci, P.; Prange, C.; Raha, S.S.; Loquellano, N.A.; Peters, G.J.; Abramson, R.D.; Mullahy, S.J.; Bosak, S.A.; McEwan, P.J.; McKernan, K.J.; Malek, J.A.; Gunaratne, P.H.; Richards, S.; Worley, K.C.; Hale, S.; Garcia, A.M.; Gay, L.J.; Hulyk, S.W.; Villalon, D.K.; Muzny, D.M.; Sodergren, E.J.; Lu, X.; Gibbs, R.A.; Fahey, J.; Helton, E.; Ketteman, M.; Madan, A.; Rodrigues, S.; Sanchez, A.; Whiting, M.; Madan, A.; Young, A.C.; Shevchenko, Y.; Bouffard, G.G.; Blakesley, R.W.; Touchman, J.W.; Green, E.D.; Dickson, M.C.; Rodriguez, A.C.; Grimwood, J.; Schmutz, J.; Myers, R.M.; Butterfield, Y.S.; Krzywinski, M.I.; Skalska, U.; Smailus, D.E.; Schnerch, A.; Schein, J.E.; Jones, S.J.; Marra, M.A. Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc. Natl. Acad. Sci. USA, 2002, 99(26), 16899-16903. doi: 10.1073/pnas.242603899 PMID: 12477932
  32. Otelea, M.R. Prion protein gene (PRNP) polymorphism at the codon 185 in Braila County local sheep breed in Romania. Rom. Biotechnol. Lett., 2011, 16(4), 6419-6429.
  33. Solomon, A.; Weiss, D.T.; Murphy, C. Primary amyloidosis associated with a novel heavy-chain fragment (AH amyloidosis). Am. J. Hematol., 1994, 45(2), 171-176. doi: 10.1002/ajh.2830450214 PMID: 8141123
  34. Castoano, E.M.; Prelli, F.; Pras, M. J. Biol. Chem., 1995, 270(29), 17610-17615. doi: 10.1074/jbc.270.29.17610 PMID: 7615568
  35. Mita, S.; Maeda, S.; Shimada, K.; Araki, S. Cloning and sequence analysis of cDNA for human prealbumin. Biochem. Biophys. Res. Commun., 1984, 124(2), 558-564. doi: 10.1016/0006-291X(84)91590-0 PMID: 6093805
  36. Gustavsson, A.; Jahr, H.; Tobiassen, R.; Jacobson, D.R.; Sletten, K.; Westermark, P. Amyloid fibril composition and transthyretin gene structure in senile systemic amyloidosis. Lab. Invest., 1995, 73(5), 703-708. PMID: 7474944
  37. Güssow, D.; Rein, R.; Ginjaar, I.; Hochstenbach, F.; Seemann, G.; Kottman, A.; Ploegh, H.L. The human beta 2-microglobulin gene. Primary structure and definition of the transcriptional unit. J. Immunol., 1987, 139(9), 3132-3138. doi: 10.4049/jimmunol.139.9.3132 PMID: 3312414
  38. Bellotti, V.; Stoppini, M.; Mangione, P.; Sunde, M.; Robinson, C.; Asti, L.; Brancaccio, D.; Ferri, G. β 2-microglobulin can be refolded into a native state from ex vivo amyloid fibrils. Eur. J. Biochem., 1998, 258(1), 61-67. doi: 10.1046/j.1432-1327.1998.2580061.x PMID: 9851692
  39. Matsumoto, T.; Nakamura, A.M.; Takahashi, K.G. Cloning of cDNAs and hybridization analysis of lysozymes from two oyster species, Crassostrea gigas and Ostrea edulis. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2006, 145(3-4), 325-330. doi: 10.1016/j.cbpb.2006.08.003
  40. Pepys, M.B.; Hawkins, P.N.; Booth, D.R.; Vigushin, D.M.; Tennent, G.A.; Soutar, A.K.; Totty, N.; Nguyen, O.; Blake, C.C.F.; Terry, C.J.; Feest, T.G.; Zalin, A.M.; Hsuan, J.J. Human lysozyme gene mutations cause hereditary systemic amyloidosis. Nature, 1993, 362(6420), 553-557. doi: 10.1038/362553a0 PMID: 8464497
  41. Nishi, M.; Chan, S.J.; Nagamatsu, S.; Bell, G.I.; Steiner, D.F. Conservation of the sequence of islet amyloid polypeptide in five mammals is consistent with its putative role as an islet hormone. Proc. Natl. Acad. Sci. USA, 1989, 86(15), 5738-5742. doi: 10.1073/pnas.86.15.5738 PMID: 2668946
  42. Christmanson, L.; Rorsman, F.; Stenman, G.; Westermark, P.; Betsholtz, C. The human islet amyloid polypeptide (IAPP) gene. FEBS Lett., 1990, 267(1), 160-166. doi: 10.1016/0014-5793(90)80314-9 PMID: 2365085
  43. Ghisaidoobe, A.; Chung, S. Intrinsic tryptophan fluorescence in the detection and analysis of proteins: A focus on Förster resonance energy transfer techniques. Int. J. Mol. Sci., 2014, 15(12), 22518-22538. doi: 10.3390/ijms151222518 PMID: 25490136
  44. Toprakcioglu, Z.; Challa, P.; Xu, C.; Knowles, T.P.J. Label-free analysis of protein aggregation and phase behavior. ACS Nano, 2019, 13(12), 13940-13948. doi: 10.1021/acsnano.9b05552 PMID: 31738513
  45. Chakraborty, H.; Chattopadhyay, A. Sensing tryptophan microenvironment of amyloid protein utilizing wavelength-selective fluorescence approach. J. Fluoresc., 2017, 27(6), 1995-2000. doi: 10.1007/s10895-017-2138-7 PMID: 28687983
  46. Aran Terol, P.; Kumita, J.R.; Hook, S.C.; Dobson, C.M.; Esbjörner, E.K. Solvent exposure of Tyr10 as a probe of structural differences between monomeric and aggregated forms of the amyloid-β peptide. Biochem. Biophys. Res. Commun., 2015, 468(4), 696-701. doi: 10.1016/j.bbrc.2015.11.018 PMID: 26551456
  47. Fiona, T.S. Structure-specific intrinsic fluorescence of protein amyloids used to study their kinetics of aggregation. Bio-nanoimaging; Academic Press, 2014.
  48. Tikhonova, T.N.; Rovnyagina, N.R.; Zherebker, A.Y.; Sluchanko, N.N.; Rubekina, A.A.; Orekhov, A.S.; Nikolaev, E.N.; Fadeev, V.V.; Uversky, V.N.; Shirshin, E.A. Dissection of the deep-blue autofluorescence changes accompanying amyloid fibrillation. Arch. Biochem. Biophys., 2018, 651, 13-20. doi: 10.1016/j.abb.2018.05.019 PMID: 29803394
  49. Sirangelo, I.; Borriello, M.; Irace, G.; Iannuzzi, C. Intrinsic blue-green fluorescence in amyloyd fibrils. AIMS Biophys., 2018, 5(2), 155-165. doi: 10.3934/biophy.2018.2.155
  50. Pinotsi, D.; Buell, A.K.; Dobson, C.M.; Kaminski, G.S. label-free, quantitative assay of amyloid fibril growth based on intrinsic fluorescence. Chem. Bio. Chem., 2013, 14, 846-850.
  51. Del Mercato, L.L.; Pompa, P.P.; Maruccio, G.; Torre, A.D.; Sabella, S.; Tamburro, A.M.; Cingolani, R.; Rinaldi, R. Charge transport and intrinsic fluorescence in amyloid-like fibrils. Proc. Natl. Acad. Sci. USA, 2007, 104(46), 18019-18024. doi: 10.1073/pnas.0702843104 PMID: 17984067
  52. Groenning, M. Binding mode of Thioflavin T and other molecular probes in the context of amyloid fibrils—current status. J. Chem. Biol., 2010, 3(1), 1-18. doi: 10.1007/s12154-009-0027-5 PMID: 19693614
  53. Apter, B. Fluorescence phenomena in amyloid and amyloidogenic bionanostructures. Crystals, 2020, 10(8), 668. doi: 10.3390/cryst10080668
  54. Sulatskaya, A.I.; Maskevich, A.A.; Kuznetsova, I.M.; Uversky, V.N.; Turoverov, K.K. Fluorescence quantum yield of thioflavin T in rigid isotropic solution and incorporated into the amyloid fibrils. PLoS One, 2010, 5(10), e15385. doi: 10.1371/journal.pone.0015385 PMID: 21048945
  55. Biancalana, M.; Koide, S. Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim. Biophys. Acta. Proteins Proteomics, 2010, 1804(7), 1405-1412. doi: 10.1016/j.bbapap.2010.04.001 PMID: 20399286
  56. Volkova, K.D.; Kovalska, V.B.; Balanda, A.O.; Vermeij, R.J.; Subramaniam, V.; Slominskii, Y.L.; Yarmoluk, S.M. Cyanine dye–protein interactions: Looking for fluorescent probes for amyloid structures. J. Biochem. Biophys. Methods, 2007, 70(5), 727-733. doi: 10.1016/j.jbbm.2007.03.008 PMID: 17467807
  57. Needham, L.M.; Weber, J.; Varela, J.A.; Fyfe, J.W.B.; Do, D.T.; Xu, C.K.; Tutton, L.; Cliffe, R.; Keenlyside, B.; Klenerman, D.; Dobson, C.M.; Hunter, C.A.; Müller, K.H.; O’Holleran, K.; Bohndiek, S.E.; Snaddon, T.N.; Lee, S.F. ThX – a next-generation probe for the early detection of amyloid aggregates. Chem. Sci. (Camb.), 2020, 11(18), 4578-4583. doi: 10.1039/C9SC04730A PMID: 34122915
  58. Sulatsky, M.I.; Sulatskaya, A.I.; Povarova, O.I.; Antifeeva, I.A.; Kuznetsova, I.M.; Turoverov, K.K. Effect of the fluorescent probes ThT and ANS on the mature amyloid fibrils. Prion, 2020, 14(1), 67-75. doi: 10.1080/19336896.2020.1720487 PMID: 32008441
  59. Wolfe, L.S.; Calabrese, M.F.; Nath, A.; Blaho, D.V.; Miranker, A.D.; Xiong, Y. Protein-induced photophysical changes to the amyloid indicator dye thioflavin T. Proc. Natl. Acad. Sci. USA, 2010, 107(39), 16863-16868. doi: 10.1073/pnas.1002867107 PMID: 20826442
  60. Klunk, W.E.; Wang, Y.; Huang, G.; Debnath, M.L.; Holt, D.P.; Mathis, C.A. Uncharged thioflavin-T derivatives bind to amyloid-β protein with high affinity and readily enter the brain. Life Sci., 2001, 69(13), 1471-1484. doi: 10.1016/S0024-3205(01)01232-2 PMID: 11554609
  61. Buxbaum, J.N.; Linke, R.P. A molecular history of the amyloidoses. J. Mol. Biol., 2012, 421(2-3), 142-159. doi: 10.1016/j.jmb.2012.01.024 PMID: 22321796
  62. Sunde, M.; Blake, C. The structure of amyloid fibrils by electron microscopy and X-ray diffraction. Adv. Protein Chem., 1997, 50, 123-159. doi: 10.1016/S0065-3233(08)60320-4 PMID: 9338080
  63. Yang, Y.; Cui, M. Radiolabeled bioactive benzoheterocycles for imaging β-amyloid plaques in Alzheimer’s disease. Eur. J. Med. Chem., 2014, 87, 703-721. doi: 10.1016/j.ejmech.2014.10.012 PMID: 25305715
  64. Gade Malmos, K.; Blancas-Mejia, L.M.; Weber, B.; Buchner, J.; Ramirez-Alvarado, M.; Naiki, H.; Otzen, D. ThT 101: A primer on the use of thioflavin T to investigate amyloid formation. Amyloid, 2017, 24(1), 1-16. doi: 10.1080/13506129.2017.1304905 PMID: 28393556
  65. Sulatskaya, A.I.; Sulatsky, M.I.; Antifeeva, I.A.; Kuznetsova, I.M.; Turoverov, K.K. Structural analogue of Thioflavin T, DMASEBT, as a tool for amyloid study. Anal. Chem., 2019, 91(4), 3131-3140. doi: 10.1021/acs.analchem.8b05737 PMID: 30673267
  66. Lavysh, A.V.; Sulatskaya, A.I.; Lugovskii, A.A.; Voropay, E.S.; Kuznetsova, I.M.; Turoverov, K.K.; Maskevich, A.A. Photophysical properties of Trans-2-4-(dimethylamino)styryl-3-ethyl-1,3-benzothiazolium perchlorate, a new structural analog of Thioflavin T. J. Appl. Spectrosc., 2014, 81(2), 205-213. doi: 10.1007/s10812-014-9911-z
  67. Klunk Imaging amyloid in AD with PIB. Ann. Neurol., 2004, 55(3), 1-14. PMID: 14991808
  68. Watanabe, H.; Ono, M.; Ariyoshi, T.; Katayanagi, R.; Saji, H. Novel benzothiazole derivatives as fluorescent probes for detection of β-amyloid and ὰ-synuclein aggregates. ACS Chem. Neurosci., 2017, 8(8), 1656-1662. doi: 10.1021/acschemneuro.6b00450 PMID: 28467708
  69. Freire, S.; De Araujo, M.H.; Al-Soufi, W.; Novo, M. Photophysical study of Thioflavin T as fluorescence marker of amyloid fibrils. Dyes Pigments, 2014, 110, 97-105. doi: 10.1016/j.dyepig.2014.05.004
  70. Mathis, C.A.; Wang, Y.; Holt, D.P.; Huang, G.F.; Debnath, M.L.; Klunk, W.E. Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J. Med. Chem., 2003, 46(13), 2740-2754. doi: 10.1021/jm030026b PMID: 12801237
  71. Qin, L. Julian Vastl and Jianmin Gao, Hightly sensitive amyloid detection enabled by thioflavin T dimers. Mol. Biosyst., 2010, 6, 1791-1795. doi: 10.1039/c005255h PMID: 20614050
  72. Ono, M.; Hayashi, S.; Kimura, H.; Kawashima, H.; Nakayama, M.; Saji, H. Push–pull benzothiazole derivatives as probes for detecting β-amyloid plaques in Alzheimer’s brains. Bioorg. Med. Chem., 2009, 17(19), 7002-7007. doi: 10.1016/j.bmc.2009.08.032 PMID: 19740669
  73. Kovalska, V.; Chernii, S.; Losytskyy, M.; Tretyakova, I.; Dovbii, Y.; Gorski, A.; Chernii, V.; Czerwieniec, R.; Yarmoluk, S. Design of functionalized β-ketoenole derivatives as efficient fluorescent dyes for detection of amyloid fibrils. New J. Chem., 2018, 42(16), 13308-13318. doi: 10.1039/C8NJ01020J
  74. Si, G.; Zhou, S.; Xu, G.; Wang, J.; Wu, B.; Zhou, S. A curcumin-based NIR fluorescence probe for detection of amyloid-beta (Aβ) plaques in Alzheimer’s disease. Dyes Pigments, 2019, 163, 509-515. doi: 10.1016/j.dyepig.2018.12.003
  75. Marzano, N.R.; Wray, K.M.; Johnston, C.L.; Paudel, B.P.; Hong, Y.; van Oijen, A.; Ecroyd, H. An ὰ-Cyanostilbene derivative for the enhanced detection and imaging of amyloid fibril aggregates. ACS Chem. Neurosci., 2020, 11(24), 4191-4202. doi: 10.1021/acschemneuro.0c00478 PMID: 33226775
  76. Shrishti, P. Basic Orange 21: A molecular rotor probe for fluorescence turn-on sensing of amyloid fibrils. J. Mol. Liq., 2020, 303(112618), 1-11.
  77. Teoh, C.L.; Su, D.; Sahu, S.; Yun, S.W.; Drummond, E.; Prelli, F.; Lim, S.; Cho, S.; Ham, S.; Wisniewski, T.; Chang, Y.T. A chemical fluorescent probe for the detection of Aβ oligomers. J. Am. Chem. Soc., 2015, 137(42), 13503-13509. doi: 10.1021/jacs.5b06190 PMID: 26218347
  78. Cao, K.J.; Kim, J.H.; Kroeger, H.; Gaffney, P.M.; Lin, J.H.; Sigurdson, C.J.; Yang, J. ARCAM-1 facilitates fluorescence detection of amyloid-containing deposits in the retina. Transl. Vis. Sci. Technol., 2021, 10(7), 5. doi: 10.1167/tvst.10.7.5 PMID: 34096989
  79. Pradhan, N.; Jana, D.; Ghorai, B.K.; Jana, N.R. Detection and monitoring of amyloid fibrillation using a fluorescence "Switch-On" Probe. ACS Appl. Mater. Interfaces, 2015, 7(46), 25813-25820. doi: 10.1021/acsami.5b07751 PMID: 26540091
  80. Li, L.; Luo, W.C.; Jiang, M.; Yu, X.; Xu, L. Turn-on fluorescence probing of amyloid fibrils by the proto-berberine alkaloids and the study of their interactions. Int. J. Biol. Macromol., 2023, 231, 123319. doi: 10.1016/j.ijbiomac.2023.123319 PMID: 36682666
  81. Carlos, W.B Small molecules fluorescent probes for the detection of amyloid self-assembly in vitro and in vivo. Curr. Protein Pept. Sci., 2011, 11, 206-220.
  82. Oyarzún, M.P.; Tapia-Arellano, A.; Cabrera, P.; Jara-Guajardo, P.; Kogan, M.J. Plasmonic nanoparticles as optical sensing probes for the detection of Alzheimer’s disease. Sensors (Basel), 2021, 21(6), 2067. doi: 10.3390/s21062067 PMID: 33809416
  83. Sun, L.; Liu, D.; Fu, D.; Yue, T.; Scharre, D.; Zhang, L. Fluorescent peptide nanoparticles to detect amyloid-beta aggregation in cerebrospinal fluid and serum for Alzheimer’s disease diagnosis and progression monitoring. Chem. Eng. J., 2021, 405, 126733. doi: 10.1016/j.cej.2020.126733
  84. Xu, S.C.S.; LoRicco, J.G.; Bishop, A.C.; James, N.A.; Huynh, W.H.; McCallum, S.A.; Roan, N.R.; Makhatadze, G.I. Sequence-independent recognition of the amyloid structural motif by GFP protein family. Proc. Natl. Acad. Sci. USA, 2020, 117(36), 22122-22127. doi: 10.1073/pnas.2001457117 PMID: 32839332
  85. Usui, K.; Mie, M.; Andou, T.; Mihara, H.; Kobatake, E. Fluorescent and luminescent fusion proteins for analyses of amyloid beta peptide aggregation. J. Pept. Sci., 2017, 23(7-8), 659-665. doi: 10.1002/psc.3003 PMID: 28378376
  86. Takahashi, T.; Mihara, H. FRET detection of amyloid β-peptide oligomerization using a fluorescent protein probe presenting a pseudo-amyloid structure. Chem. Commun. (Camb.), 2012, 48(10), 1568-1570. doi: 10.1039/C1CC14552E PMID: 21909572
  87. Morfin, J.F.; Lacerda, S.; Geraldes, C.F.G.C.; Tóth, É. Metal complexes for the visualisation of amyloid peptides. Sensors & Diagnostics, 2022, 1(4), 627-647. doi: 10.1039/D2SD00026A
  88. Chia, Y.Y.; Tay, M.G. An insight into fluorescent transition metal complexes. Dalton Trans., 2014, 43(35), 13159-13168. doi: 10.1039/C4DT01098A PMID: 25032996
  89. Hayne, D.J.; Lim, S.; Donnelly, P.S. Metal complexes designed to bind to amyloid-β for the diagnosis and treatment of Alzheimer’s disease. Chem. Soc. Rev., 2014, 43(19), 6701-6715. doi: 10.1039/C4CS00026A PMID: 24671229
  90. Yu, H.; Zhao, W.; Xie, M.; Li, X.; Sun, M.; He, J.; Wang, L.; Yu, L. Real-time monitoring of self-aggregation of β-amyloid by a fluorescent probe based on Ruthenium complex. Anal. Chem., 2020, 92(4), 2953-2960. doi: 10.1021/acs.analchem.9b03566 PMID: 31941275
  91. Herland, A.; Nilsson, K.P.R.; Olsson, J.D.M.; Hammarström, P.; Konradsson, P.; Inganäs, O. Synthesis of a regioregular zwitterionic conjugated oligoelectrolyte, usable as an optical probe for detection of amyloid fibril formation at acidic pH. J. Am. Chem. Soc., 2005, 127(7), 2317-2323. doi: 10.1021/ja045835e PMID: 15713111
  92. Herrmann, U.S.; Schütz, A.K.; Shirani, H.; Huang , D.; Saban, D.; Nuvolone, M.; Li, B.; Ballmer, B.; Åslund, A.K.; Mason, J.J.; Rushing, E.; Budka, H.; Nyström, S.; Hammarström, P.; Böckmann, A.; Caflisch, A.; Meier, B.H.; Nilsson, K.P.; Hornemann, S.; Aguzzi., A. Structure-based drug design identifies polythiophenes as antiprion compounds. Sci. Translat. Med., 2015, 299, ra123.
  93. Kieninger, B.; Gioeva, Z.; Krüger, S.; Westermark, G.T.; Friedrich, R.P.; FÄndrich, M.; Röcken, C. PTAA and B10: new approaches to amyloid detection in tissue—evaluation of amyloid detection in tissue with a conjugated polyelectrolyte and a fibril-specific antibody fragment. Amyloid, 2011, 18(2), 47-52. doi: 10.3109/13506129.2011.560623 PMID: 21401323
  94. Åslund, A.; Sigurdson, C.J.; Klingstedt, T.; Grathwohl, S.; Bolmont, T.; Dickstein, D.L.; Glimsdal, E.; Prokop, S.; Lindgren, M.; Konradsson, P.; Holtzman, D.M.; Hof, P.R.; Heppner, F.L.; Gandy, S.; Jucker, M.; Aguzzi, A.; Hammarström, P.; Nilsson, K.P.R. Novel pentameric thiophene derivatives for in vitro and in vivo optical imaging of a plethora of protein aggregates in cerebral amyloidoses. ACS Chem. Biol., 2009, 4(8), 673-684. doi: 10.1021/cb900112v PMID: 19624097
  95. Nilsson, K.P.R. Conjugated polyelectrolytes- Conformation-sensitive optical probes for staining and characterization of amyloid deposits. Chembiochem., 2006, 797, 1096-1104.
  96. Hawe, A.; Sutter, M.; Jiskoot, W. Extrinsic fluorescent dyes as tools for protein characterization. Pharm. Res., 2008, 25(7), 1487-1499. doi: 10.1007/s11095-007-9516-9 PMID: 18172579
  97. Galbán, J.; Andreu, Y.; Sierra, J.F.; De Marcos, S.; Castillo, J.R. Intrinsic fluorescence of enzymes and fluorescence of chemically modified enzymes for analytical purposes: A review. Luminescence, 2001, 16(2), 199-210. doi: 10.1002/bio.633 PMID: 11312548
  98. Hellmann, N.; Schneider, D. Hands on: Using tryptophan fluorescence spectroscopy to study protein structure. Methods Mol. Biol., 2019, 1958, 379-401. doi: 10.1007/978-1-4939-9161-7_20 PMID: 30945230
  99. Ruiz-Arias, Á.; Jurado, R.; Fueyo-González, F.; Herranz, R.; Gálvez, N.; González-Vera, J.A.; Orte, A. A FRET pair for quantitative and superresolution imaging of amyloid fibril formation. Sens. Actuators. B. Chem., 2022, 350, 130882. doi: 10.1016/j.snb.2021.130882
  100. Espinar-Barranco, L.; Paredes, J.M.; Orte, A.; Crovetto, L.; Garcia-Fernandez, E. A solvatofluorochromic dye as a fluorescent lifetime-based probe of β-amyloid aggregation. Dyes Pigments, 2022, 202, 110274. doi: 10.1016/j.dyepig.2022.110274
  101. Zhou, Y.; Hua, J.; Ding, D.; Tang, Y. Interrogating amyloid aggregation with aggregation-induced emission fluorescence probes. Biomaterials, 2022, 286, 121605. doi: 10.1016/j.biomaterials.2022.121605 PMID: 35653878
  102. Alexander, P.D. Photobleaching of organic fluorophores: quantitative characterization, mechanisms, protection. Methods Appl. Fluoresc., 2020, 8, 1-26.
  103. Wan, J.; Zhang, X.; Zhang, K.; Su, Z. Biological nanoscale fluorescent probes: From structure and performance to bioimaging. Rev. Anal. Chem., 2020, 39(1), 209-221. doi: 10.1515/revac-2020-0119
  104. Smith, A.M.; Mancini, M.C.; Nie, S. Second window for in vivo imaging. Nat. Nanotechnol., 2009, 4(11), 710-711. doi: 10.1038/nnano.2009.326 PMID: 19898521
  105. Yang, Y.; Yu, Y.; Chen, H.; Meng, X.; Ma, W.; Yu, M.; Li, Z.; Li, C.; Liu, H.; Zhang, X.; Xiao, H.; Yu, Z. Illuminating platinum transportation while maximizing therapeutic efficacy by gold nanoclusters via simultaneous near-infrared-I/II imaging and glutathione scavenging. ACS Nano, 2020, 14(10), 13536-13547. doi: 10.1021/acsnano.0c05541 PMID: 32924505
  106. Tokuraku, K.; Marquardt, M.; Ikezu, T. Real-time imaging and quantification of amyloid-β peptide aggregates by novel quantum-dot nanoprobes. PLoS One, 2009, 4(12), e8492. doi: 10.1371/journal.pone.0008492 PMID: 20041162
  107. Barbalinardo, M.; Antosova, A.; Gambucci, M.; Bednarikova, Z.; Albonetti, C.; Valle, F.; Sassi, P.; Latterini, L.; Gazova, Z.; Bystrenova, E. Effect of metallic nanoparticles on amyloid fibrils and their influence to neural cell toxicity. Nano Res., 2020, 13(4), 1081-1089. doi: 10.1007/s12274-020-2748-2
  108. Zhao, J.; Xu, N.; Yang, X.; Ling, G.; Zhang, P. The roles of gold nanoparticles in the detection of amyloid-β peptide for Alzheimer’s disease. Colloid Interface Sci. Commun., 2022, 46, 100579. doi: 10.1016/j.colcom.2021.100579
  109. Chakraborty, A.; Mohapatra, S.S.; Barik, S.; Roy, I.; Gupta, B.; Biswas, A. Impact of nanoparticles on amyloid β-induced Alzheimer’s disease, tuberculosis, leprosy and cancer: A systematic review. Biosci. Rep., 2023, 43(2), BSR20220324. doi: 10.1042/BSR20220324 PMID: 36630532
  110. Tsay, J.M.; Michalet, X. New light on quantum dot cytotoxicity. Chem. Biol., 2005, 12(11), 1159-1161. doi: 10.1016/j.chembiol.2005.11.002 PMID: 16298294
  111. Crivat, G.; Taraska, J.W. Imaging proteins inside cells with fluorescent tags. Trends Biotechnol., 2012, 30(1), 8-16. doi: 10.1016/j.tibtech.2011.08.002 PMID: 21924508
  112. Prajapati, K.P.; Ansari, M.; Yadav, D.K.; Mittal, S.; Anand, B.G.; Kar, K. A robust yet simple method to generate fluorescent amyloid nanofibers. J. Mater. Chem. B., 2023, 11(36), 8765-8774. doi: 10.1039/D3TB01203D PMID: 37661927
  113. Xu, R.; Wu, Q.; Xing, C.; Wang, H.; Xu, W.; Meng, X.; Hou, H. A novel water-stable luminescent metal complex exhibiting high sensitive and selective detection to Fe3+ and Al3+. Polyhedron, 2021, 197(197), 115056. doi: 10.1016/j.poly.2021.115056
  114. Nilsson, K.P.R.; Ikenberg, K.; Åslund, A.; Fransson, S.; Konradsson, P.; Röcken, C.; Moch, H.; Aguzzi, A. Structural typing of systemic amyloidoses by luminescent-conjugated polymer spectroscopy. Am. J. Pathol., 2010, 176(2), 563-574. doi: 10.2353/ajpath.2010.080797 PMID: 20035056
  115. Thomas, S.W., III; Joly, G.D.; Swager, T.M. Chemical sensors based on amplifying fluorescent conjugated polymers. Chem. Rev., 2007, 107(4), 1339-1386. doi: 10.1021/cr0501339 PMID: 17385926
  116. Sigurdson, C.J.; Nilsson, K.P.R.; Hornemann, S.; Manco, G.; Polymenidou, M.; Schwarz, P.; Leclerc, M.; Hammarström, P.; Wüthrich, K.; Aguzzi, A. Prion strain discrimination using luminescent conjugated polymers. Nat. Methods, 2007, 4(12), 1023-1030. doi: 10.1038/nmeth1131 PMID: 18026110
  117. Jara-Guajardo, P.; Cabrera, P.; Celis, F.; Soler, M.; Berlanga, I.; Parra-Muñoz, N.; Acosta, G.; Albericio, F.; Guzman, F.; Campos, M.; Alvarez, A.; Morales-Zavala, F.; Kogan, M.J. Gold nanoparticles mediate improved detection of β-amyloid aggregates by fluorescence. Nanomaterials (Basel), 2020, 10(4), 690. doi: 10.3390/nano10040690 PMID: 32268543
  118. Molecular rotors: fluorescent sensors for microviscosity and conformation of biomolecules. Angew. Chem. Int. Ed., 2024, 63(6), 1-711.
  119. Gence, L. Conjugated polymer and hybrid polymer metal single nanowires: Correlated characterization and device integration. Nanowires Science and Technology; Intechopen, 2010.
  120. Xia, N.; Zhou, B.; Huang, N.; Jiang, M.; Zhang, J.; Liu, L. Visual and fluorescent assays for selective detection of beta-amyloid oligomers based on the inner filter effect of gold nanoparticles on the fluorescence of CdTe quantum dots. Biosens. Bioelectron., 2016, 85, 625-632. doi: 10.1016/j.bios.2016.05.066 PMID: 27240009
  121. Gorbenko, G.; Trusova, V.; Deligeorgiev, T.; Gadjev, N.; Mizuguchi, C.; Saito, H. Two-step FRET as a tool for probing the amyloid state of proteins. J. Mol. Liq., 2019, 294(111675), 111675. doi: 10.1016/j.molliq.2019.111675
  122. Nair, R.V.; Padmanabhan, P.; Gulyás, B.; Matham, M.V. Fluorescence Resonance Energy Transfer (FRET)-Based ThT free sensing of Beta-Amyloid fibrillation by Carbon dot-Ag composites. Plasmonics, 2021, 16(3), 863-872. doi: 10.1007/s11468-020-01338-w
  123. Hamd-Ghadareh, S.; Salimi, A.; Parsa, S.; Mowla, S.J. Development of three-dimensional semi-solid hydrogel matrices for ratiometric fluorescence sensing of Amyloid β peptide and imaging in SH-SY5 cells: Improvement of point of care diagnosis of Alzheimer’s disease biomarker. Biosens. Bioelectron., 2022, 199(113895), 113895. doi: 10.1016/j.bios.2021.113895 PMID: 34968953
  124. Birch, D.J.S. Fluorescence detections and directions. Meas. Sci. Technol., 2011, 22(5), 052002. doi: 10.1088/0957-0233/22/5/052002
  125. Rolinski, O.J.; Amaro, M.; Birch, D.J.S. Early detection of amyloid aggregation using intrinsic fluorescence. Biosens. Bioelectron., 2010, 25(10), 2249-2252. doi: 10.1016/j.bios.2010.03.005
  126. Nath, P.; Mahtaba, K.R.; Ray, A. Fluorescence-based portable assays for detection of biological and chemical analytes. Sensors, 2023, 23(11), 1-22. doi: 10.3390/s23115053
  127. Young-Ho Shin, M. Teresa Gutierrez-Wing, and Jin-Woo Choi, Review- Recent progress in portable fluorescence sensors. J. Electrochem. Soc., 2021, 168, 1-18.
  128. Strianese, M.; Staiano, M.; Ruggiero, G.; Labella, T.; Pellecchia, C.; D’Auria, S. Fluorescence-Based Biosensors. Methods Mol. Biol., 2012, 875, 193-216. doi: 10.1007/978-1-61779-806-1_9 PMID: 22573441
  129. Lohcharoenkal, W.; Abbas, Z.; Rojanasakul, Y. Advances in nanotechnology-based biosensing of immunoregulatory cytokines. Biosensors (Basel), 2021, 11(10), 364. doi: 10.3390/bios11100364 PMID: 34677320
  130. Damborský, P.; Švitel, J.; Katrlík, J. Optical biosensors. Essays Biochem., 2016, 60(1), 91-100. doi: 10.1042/EBC20150010 PMID: 27365039
  131. Jamerlan, A.; Soo, S.; Hulme, J. Advances in amyloid beta oligomer detection applications in Alzheimer’s disease. Trends Analyt Chem., 2020, 129, 115919.
  132. Li, F.; Stewart, C.; Yang, S.; Shi, F.; Cui, W.; Zhang, S.; Wang, H.; Huang, H.; Chen, M.; Han, J. Optical sensor array for the early diagnosis of Alzheimer’s Disease. Front Chem., 2022, 10, 874864. doi: 10.3389/fchem.2022.874864 PMID: 35444997
  133. Bunz, U.H. Poly(paraphenyleneethynylene and Poly(aryleneethynylene)s. Handbook of conducting polymers; CRC Press., 2007.
  134. Mehrotra, Parikha Biosensors and their applications- A review. JOBCR-202, 2016, 6(2), 153-159.
  135. Dominguez, M.H. Optical biosensors and their applications for the detection of water pollutants. Biosensors., 2023, 13(3), 370.
  136. Ishigaki, Y.; Tanaka, H.; Akama, H.; Ogara, T.; Uwai, K.; Tokuraku, K. A microliter-scale high-throughput screening system with quantum-dot nanoprobes for amyloid-β aggregation inhibitors. PLoS One, 2013, 8(8), e72992. doi: 10.1371/journal.pone.0072992 PMID: 23991168
  137. Sasaki, R.; Tainaka, R.; Ando, Y.; Hashi, Y.; Deepak, H.V.; Suga, Y.; Murai, Y.; Anetai, M.; Monde, K.; Ohta, K.; Ito, I.; Kikuchi, H.; Oshima, Y.; Endo, Y.; Nakao, H.; Sakono, M.; Uwai, K.; Tokuraku, K. An automated microliter-scale high-throughput screening system (MSHTS) for real-time monitoring of protein aggregation using quantum-dot nanoprobes. Sci. Rep., 2019, 9(1), 2587. doi: 10.1038/s41598-019-38958-0 PMID: 30796247
  138. Akhtar, N.; Metkar, S.K.; Girigoswami, A.; Girigoswami, K. ZnO nanoflower based sensitive nano-biosensor for amyloid detection. Mater. Sci. Eng. C, 2017, 78, 960-968. doi: 10.1016/j.msec.2017.04.118 PMID: 28576073
  139. Dong, J.; Fujita, R.; Zako, T.; Ueda, H. Construction of Quenchbodies to detect and image amyloid β oligomers. Anal. Biochem., 2018, 550, 61-67. doi: 10.1016/j.ab.2018.04.016 PMID: 29678763
  140. Chen, W.; Gao, G.; Jin, Y.; Deng, C. A facile biosensor for Aβ40O based on fluorescence quenching of prussian blue nanoparticles. Talanta, 2020, 216(120930), 120930. doi: 10.1016/j.talanta.2020.120930 PMID: 32456942
  141. Xing, Z.W. Driving force to detect Alzheimer’s disease biomarkers: application of a thioflavine T@Er-MOF ratiometric fluorescent sensor for smart detection of presenilin 1, amyloid β-protein and acetylcholine. Analyst (Lond.), 2020, 145(4646), 1-18.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024