Plant bZIP Proteins: Potential use in Agriculture - A Review


Cite item

Full Text

Abstract

With global climate changes and the increased demand for food due to expected world population growth, genetic improvement programs have aimed at producing crops with increased yield and tolerance to environmental stresses, such as drought, salinity, and pathogens. On the other hand, genetic improvement programs via biotechnology require candidate genes that confer traits of interest to be incorporated into improved crops. In this regard, genes encoding transcription factors (TFs) can be promising since they are proteins that transcriptionally regulate the expression of target genes related to the most diverse roles in the plant, including defense against stresses. Among TFs, bZIP (basic leucine zipper) proteins regulate many developmental and physiological processes in the plant, such as seed formation, fruit ripening, nutrient assimilation, and defense response to abiotic and biotic stresses. In this review, we aim to highlight the main advances in the potential use of bZIP TFs in the genetic improvement of crops. We address this potential mainly regarding crop tolerance to stresses and other agricultural traits, such as increased yield and fruit features.

About the authors

Cláudia de Souza

Instituto de Ciências Biológicas,, Universidade Federal do Pará (UFPA),

Author for correspondence.
Email: info@benthamscience.net

Cleyson Serrão

Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA

Email: info@benthamscience.net

Nicolle Barros

Departamento de Genética,, Universidade Federal do Rio Grande do Sul (UFRGS)

Email: info@benthamscience.net

Sávio dos Reis

Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará (UEPA)

Email: info@benthamscience.net

Deyvid Marques

Departamento de Genética,, Universidade de São Paulo (USP), Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ),

Email: info@benthamscience.net

References

  1. Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate trends and global crop production since 1980. Science, 2011, 333(6042), 616-620. doi: 10.1126/science.1204531 PMID: 21551030
  2. Nykiel, M.; Gietler, M.; Fidler, J.; Prabucka, B.; Rybarczyk-Płońska, A.; Graska, J.; Boguszewska-Mańkowska, D.; Muszyńska, E.; Morkunas, I.; Labudda, M. Signal transduction in cereal plants struggling with environmental stresses: From perception to response. Plants, 2022, 11(8), 1009. doi: 10.3390/plants11081009 PMID: 35448737
  3. Ji, X.; Liu, G.; Liu, Y.; Zheng, L.; Nie, X.; Wang, Y. The bZIP protein from Tamarix hispida, ThbZIP1, is ACGT elements binding factor that enhances abiotic stress signaling in transgenic Arabidopsis. BMC Plant Biol., 2013, 13(1), 151. doi: 10.1186/1471-2229-13-151 PMID: 24093718
  4. Li, X.; Feng, B.; Zhang, F.; Tang, Y.; Zhang, L.; Ma, L.; Zhao, C.; Gao, S. Bioinformatic analyses of subgroup-A members of the wheat bZIP transcription factor family and functional identification of TabZIP174 involved in drought stress response. Front. Plant Sci., 2016, 7, 1643. doi: 10.3389/fpls.2016.01643 PMID: 27899926
  5. Hsieh, T.H.; Li, C.W.; Su, R.C.; Cheng, C.P.; Sanjaya,; Tsai, Y.C.; Chan, M.T. A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response. Planta, 2010, 231(6), 1459-1473. doi: 10.1007/s00425-010-1147-4 PMID: 20358223
  6. Li, X.; Fan, S.; Hu, W.; Liu, G.; Wei, Y.; He, C.; Shi, H. Two cassava basic leucine zipper (bZIP) transcription factors (MebZIP3 and MebZIP5) confer disease resistance against cassava bacterial blight. Front. Plant Sci., 2017, 8, 2110. doi: 10.3389/fpls.2017.02110 PMID: 29276527
  7. Marques, D.N.; Reis, S.P.; de Souza, C.R.B. Plant NAC transcription factors responsive to abiotic stresses. Plant Gene, 2017, 11, 170-179. doi: 10.1016/j.plgene.2017.06.003
  8. Baillo, E.H.; Kimotho, R.N.; Zhang, Z.; Xu, P. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes, 2019, 10(10), 771. doi: 10.3390/genes10100771 PMID: 31575043
  9. Chai, M.; Fan, R.; Huang, Y.; Jiang, X.; Wai, M.H.; Yang, Q.; Su, H.; Liu, K.; Ma, S.; Chen, Z.; Wang, F.; Qin, Y.; Cai, H. GmbZIP152, a soybean bZIP transcription factor, confers multiple biotic and abiotic stress responses in plant. Int. J. Mol. Sci., 2022, 23(18), 10935. doi: 10.3390/ijms231810935 PMID: 36142886
  10. Yang, S.; Zhang, X.; Zhang, X.; Bi, Y.; Gao, W. A bZIP transcription factor, PqbZIP1, is involved in the plant defense response of American ginseng. PeerJ, 2022, 10, e12939. doi: 10.7717/peerj.12939 PMID: 35282281
  11. Weising, K.; Kahl, G. Towards an understanding of plant gene regulation: The action of nuclear factors. Z. Naturforsch. C J. Biosci., 1991, 46(1-2), 1-11. doi: 10.1515/znc-1991-1-202
  12. Schwechheimer, C.; Zourelidou, M.; Bevan, M.W. Plant transcription factor studies. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1998, 49(1), 127-150. doi: 10.1146/annurev.arplant.49.1.127 PMID: 15012230
  13. Gai, W.X.; Ma, X.; Qiao, Y.M.; Shi, B.H.; Ul Haq, S.; Li, Q.H.; Wei, A.M.; Liu, K.K.; Gong, Z.H. Characterization of the bZIP transcription factor family in pepper (Capsicum annuum L.): CabZIP25 positively modulates the salt tolerance. Front Plant Sci., 2020, 11, 139.
  14. An, J.P.; Qu, F.J.; Yao, J.F.; Wang, X.N.; You, C.X.; Wang, X.F.; Hao, Y.J. The bZIP transcription factor MdHY5 regulates anthocyanin accumulation and nitrate assimilation in apple. Hortic. Res., 2017, 4(1), 17023. doi: 10.1038/hortres.2017.23 PMID: 28611922
  15. Pontes, L.C.G.; Cardoso, C.M.Y.; Callegari, D.M.; dos Reis, S.P.; do Socorro Alves Namias, É.; da Cunha Ferreira, S.; de Souza, C.R.B. A cassava CPRF-2-like bZIP transcription factor showed increased transcript levels during light treatment. Protein Pept. Lett., 2020, 27(9), 904-914. doi: 10.2174/0929866527666200420110338 PMID: 32310038
  16. Fuhrmann-Aoyagi, M.B.; de Fátima Ruas, C.; Barbosa, E.G.G.; Braga, P.; Moraes, L.A.C.; de Oliveira, A.C.B.; Kanamori, N.; Yamaguchi-Shinozaki, K.; Nakashima, K.; Nepomuceno, A.L.; Mertz-Henning, L.M. Constitutive expression of Arabidopsis bZIP transcription factor AREB1 activates cross-signaling responses in soybean under drought and flooding stresses. J. Plant Physiol., 2021, 257, 153338. doi: 10.1016/j.jplph.2020.153338 PMID: 33401097
  17. Wang, H.; Zhang, Y.; Norris, A.; Jiang, C.Z. S1-bZIP transcription factors play important roles in the regulation of fruit quality and stress response. Front. Plant Sci., 2022, 12, 802802. doi: 10.3389/fpls.2021.802802 PMID: 35095974
  18. Vinson, C.R.; Sigler, P.B.; McKnight, S.L. Scissors-grip model for DNA recognition by a family of leucine zipper proteins. Science, 1989, 246(4932), 911-916. doi: 10.1126/science.2683088 PMID: 2683088
  19. Jakoby, M.; Weisshaar, B.; Dröge-Laser, W.; Vicente-Carbajosa, J.; Tiedemann, J.; Kroj, T.; Parcy, F. bZIP transcription factors in Arabidopsis. Trends Plant Sci., 2002, 7(3), 106-111. doi: 10.1016/S1360-1385(01)02223-3 PMID: 11906833
  20. Vinson, C.R.; Hai, T.; Boyd, S.M. Dimerization specificity of the leucine zipper-containing bZIP motif on DNA binding: Prediction and rational design. Genes Dev., 1993, 7(6), 1047-1058. doi: 10.1101/gad.7.6.1047 PMID: 8504929
  21. Sprenger-Haussels, M.; Weisshaar, B. Transactivation properties of parsley proline-rich bZIP transcription factors. Plant J., 2000, 22(1), 1-8. doi: 10.1046/j.1365-313x.2000.00687.x PMID: 10792815
  22. Clauss, I.; Chu, M.; Zhao, J.L.; Glimcher, L.H. The basic domain/leucine zipper protein hXBP-1 preferentially binds to and transactivates CRE-like sequences containing an ACGT core. Nucleic Acids Res., 1996, 24(10), 1855-1864. doi: 10.1093/nar/24.10.1855 PMID: 8657566
  23. Azeem, F.; Tahir, H.; Ijaz, U.; Shaheen, T. A genome-wide comparative analysis of bZIP transcription factors in G. arboreum and G. raimondii (Diploid ancestors of present-day cotton). Physiol. Mol. Biol. Plants, 2020, 26(3), 433-444. doi: 10.1007/s12298-020-00771-9 PMID: 32205921
  24. Joo, H.; Baek, W.; Lim, C.W.; Lee, S.C. Post-translational modifications of bZIP transcription factors in abscisic acid signaling and drought responses. Curr. Genomics, 2021, 22(1), 4-15. doi: 10.2174/18755488MTEx6OTQj0 PMID: 34045920
  25. Foster, R.; Izawa, T.; Chua, N.H. Plant bZIP proteins gather at ACGT elements. FASEB J., 1994, 8(2), 192-200. doi: 10.1096/fasebj.8.2.8119490 PMID: 8119490
  26. Landschulz, W.H.; Johnson, P.F.; McKnight, S.L. The leucine zipper: A hypothetical structure common to a new class of DNA binding proteins. Science, 1988, 240(4860), 1759-1764. doi: 10.1126/science.3289117 PMID: 3289117
  27. Nijhawan, A.; Jain, M.; Tyagi, A.K.; Khurana, J.P. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol., 2008, 146(2), 323-324. doi: 10.1104/pp.107.112821 PMID: 18065552
  28. Hai, T.; Curran, T. Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc. Natl. Acad. Sci. USA, 1991, 88(9), 3720-3724. doi: 10.1073/pnas.88.9.3720 PMID: 1827203
  29. Ellenberger, T.E.; Brandl, C.J.; Struhl, K.; Harrison, S.C. The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted α Helices: Crystal structure of the protein-DNA complex. Cell, 1992, 71(7), 1223-1237. doi: 10.1016/S0092-8674(05)80070-4 PMID: 1473154
  30. Amoutzias, G.D.; Robertson, D.L.; Van de Peer, Y.; Oliver, S.G. Choose your partners: Dimerization in eukaryotic transcription factors. Trends Biochem. Sci., 2008, 33(5), 220-229. doi: 10.1016/j.tibs.2008.02.002 PMID: 18406148
  31. Ehlert, A.; Weltmeier, F.; Wang, X.; Mayer, C.S.; Smeekens, S.; Vicente-Carbajosa, J.; Dröge-Laser, W. Two-hybrid protein-protein interaction analysis in Arabidopsis protoplasts: Establishment of a heterodimerization map of group C and group S bZIP transcription factors. Plant J., 2006, 46(5), 890-900. doi: 10.1111/j.1365-313X.2006.02731.x PMID: 16709202
  32. Weltmeier, F.; Ehlert, A.; Mayer, C.S.; Dietrich, K.; Wang, X.; Schütze, K.; Alonso, R.; Harter, K.; Vicente-Carbajosa, J.; Dröge-Laser, W. Combinatorial control of Arabidopsis proline dehydrogenase transcription by specific heterodimerisation of bZIP transcription factors. EMBO J., 2006, 25(13), 3133-3143. doi: 10.1038/sj.emboj.7601206 PMID: 16810321
  33. Feng, Y.; Wang, Y.; Zhang, G.; Gan, Z.; Gao, M.; Lv, J.; Wu, T.; Zhang, X.; Xu, X.; Yang, S.; Han, Z. Group‐C/S1 bZIP heterodimers regulate MdIPT5b to negatively modulate drought tolerance in apple species. Plant J., 2021, 107(2), 399-417. doi: 10.1111/tpj.15296 PMID: 33905154
  34. Hartmann, L.; Pedrotti, L.; Weiste, C.; Fekete, A.; Schierstaedt, J.; Göttler, J.; Kempa, S.; Krischke, M.; Dietrich, K.; Mueller, M.J.; Vicente-Carbajosa, J.; Hanson, J.; Dröge-Laser, W. Crosstalk between two bZIP signaling pathways orchestrates salt-induced metabolic reprogramming in Arabidopsis roots. Plant Cell, 2015, 27(8), 2244-2260. doi: 10.1105/tpc.15.00163 PMID: 26276836
  35. Zhong, L.; Chen, D.; Min, D.; Li, W.; Xu, Z.; Zhou, Y.; Li, L.; Chen, M.; Ma, Y. AtTGA4, a bZIP transcription factor, confers drought resistance by enhancing nitrate transport and assimilation in Arabidopsis thaliana. Biochem. Biophys. Res. Commun., 2015, 457(3), 433-439. doi: 10.1016/j.bbrc.2015.01.009 PMID: 25596127
  36. Assunção, A.G.L.; Herrero, E.; Lin, Y.F.; Huettel, B.; Talukdar, S.; Smaczniak, C.; Immink, R.G.H.; van Eldik, M.; Fiers, M.; Schat, H.; Aarts, M.G.M. Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proc. Natl. Acad. Sci. USA, 2010, 107(22), 10296-10301. doi: 10.1073/pnas.1004788107 PMID: 20479230
  37. Luang, S.; Sornaraj, P.; Bazanova, N.; Jia, W.; Eini, O.; Hussain, S.S.; Kovalchuk, N.; Agarwal, P.K.; Hrmova, M.; Lopato, S. The wheat TabZIP2 transcription factor is activated by the nutrient starvation-responsive SnRK3/CIPK protein kinase. Plant Mol. Biol., 2018, 96(6), 543-561. doi: 10.1007/s11103-018-0713-1 PMID: 29564697
  38. Chang, Y.; Nguyen, B.H.; Xie, Y.; Xiao, B.; Tang, N.; Zhu, W.; Mou, T.; Xiong, L. Co-overexpression of the constitutively active form of OsbZIP46 and ABA-activated protein kinase SAPK6 improves drought and temperature stress resistance in rice. Front. Plant Sci., 2017, 8, 1102. doi: 10.3389/fpls.2017.01102 PMID: 28694815
  39. Guan, Y.; Ren, H.; Xie, H.; Ma, Z.; Chen, F. Identification and characterization of bZIP-type transcription factors involved in carrot (Daucus carota L.) somatic embryogenesis. Plant J., 2009, 60(2), 207-217. doi: 10.1111/j.1365-313X.2009.03948.x PMID: 19519801
  40. Abe, M.; Kobayashi, Y.; Yamamoto, S.; Daimon, Y.; Yamaguchi, A.; Ikeda, Y.; Ichinoki, H.; Notaguchi, M.; Goto, K.; Araki, T.FD a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science, 2005, 309(5737), 1052-1056. doi: 10.1126/science.1115983 PMID: 16099979
  41. Iven, T.; Strathmann, A.; Böttner, S.; Zwafink, T.; Heinekamp, T.; Guivarc’h, A.; Roitsch, T.; Dröge-Laser, W. Homo- and heterodimers of tobacco bZIP proteins counteract as positive or negative regulators of transcription during pollen development. Plant J., 2010, 63(1) doi: 10.1111/j.1365-313X.2010.04230.x PMID: 20409000
  42. Huang, X.; Ouyang, X.; Yang, P.; Lau, O.S.; Li, G.; Li, J.; Chen, H.; Deng, X.W. Arabidopsis FHY3 and HY5 positively mediate induction of COP1 transcription in response to photomorphogenic UV-B light. Plant Cell, 2012, 24(11), 4590-4606. doi: 10.1105/tpc.112.103994 PMID: 23150635
  43. Smykowski, A.; Zimmermann, P.; Zentgraf, U. G-Box binding factor1 reduces CATALASE2 expression and regulates the onset of leaf senescence in Arabidopsis. Plant Physiol., 2010, 153(3), 1321-1331. doi: 10.1104/pp.110.157180 PMID: 20484024
  44. Dröge-Laser, W.; Snoek, B.L.; Snel, B.; Weiste, C. The Arabidopsis bZIP transcription factor family — an update. Curr. Opin. Plant Biol., 2018, 45(Pt A), 36-49. doi: 10.1016/j.pbi.2018.05.001 PMID: 29860175
  45. Ji, Q.; Zhang, L.; Wang, Y.; Wang, J. Genome-wide analysis of basic leucine zipper transcription factor families in Arabidopsis thaliana, Oryza sativa and Populus trichocarpa. J. Shanghai Univ.(English Edition), 2009, 13(2), 174-182. doi: 10.1007/s11741-009-0216-3
  46. Wei, K.; Chen, J.; Wang, Y.; Chen, Y.; Chen, S.; Lin, Y.; Pan, S.; Zhong, X.; Xie, D. Genome-wide analysis of bZIP-encoding genes in maize. DNA Res., 2012, 19(6), 463-476. doi: 10.1093/dnares/dss026 PMID: 23103471
  47. Zhang, M.; Liu, Y.; Shi, H.; Guo, M.; Chai, M.; He, Q.; Yan, M.; Cao, D.; Zhao, L.; Cai, H.; Qin, Y. Evolutionary and expression analyses of soybean basic Leucine zipper transcription factor family. BMC Genomics, 2018, 19(1), 159. doi: 10.1186/s12864-018-4511-6 PMID: 29471787
  48. Agarwal, P.; Baranwal, V.K.; Khurana, P. Genome-wide analysis of bZIP transcription factors in wheat and functional characterization of a tabzip under abiotic stress. Sci. Rep., 2019, 9(1), 4608. doi: 10.1038/s41598-019-40659-7 PMID: 30872683
  49. Hu, W.; Yang, H.; Yan, Y.; Wei, Y.; Tie, W.; Ding, Z.; Zuo, J.; Peng, M.; Li, K. Genome-wide characterization and analysis of bZIP transcription factor gene family related to abiotic stress in cassava. Sci. Rep., 2016, 6(1), 22783. doi: 10.1038/srep22783 PMID: 26947924
  50. Chang, Q.; Lu, X.; Liu, Z.; Zheng, Z.; Yu, S. Identification and characterization of the bZIP transcription factor family in yellowhorn. J. For. Res., 2021, 32(1), 273-284. doi: 10.1007/s11676-020-01129-3
  51. Ang, L.H.; Chattopadhyay, S.; Wei, N.; Oyama, T.; Okada, K.; Batschauer, A.; Deng, X.W. Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol. Cell, 1998, 1(2), 213-222. doi: 10.1016/S1097-2765(00)80022-2 PMID: 9659918
  52. Park, S.Y.; Fung, P.; Nishimura, N.; Jensen, D.R.; Fujii, H.; Zhao, Y.; Lumba, S.; Santiago, J.; Rodrigues, A.; Chow, T.F.; Alfred, S.E.; Bonetta, D.; Finkelstein, R.; Provart, N.J.; Desveaux, D.; Rodriguez, P.L.; McCourt, P.; Zhu, J.K.; Schroeder, J.I.; Volkman, B.F.; Cutler, S.R. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science, 2009, 324(5930), 1068-1071. doi: 10.1126/science.1173041 PMID: 19407142
  53. Fujita, Y.; Nakashima, K.; Yoshida, T.; Katagiri, T.; Kidokoro, S.; Kanamori, N.; Umezawa, T.; Fujita, M.; Maruyama, K.; Ishiyama, K.; Kobayashi, M.; Nakasone, S.; Yamada, K.; Ito, T.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol., 2009, 50(12), 2123-2132. doi: 10.1093/pcp/pcp147 PMID: 19880399
  54. Banerjee, A.; Roychoudhury, A. Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress. Protoplasma, 2017, 254(1), 3-16. doi: 10.1007/s00709-015-0920-4 PMID: 26669319
  55. Busk, P.K.; Pagès, M. Regulation of abscisic acid-induced transcription. Plant Mol. Biol., 1998, 37(3), 425-435. doi: 10.1023/A:1006058700720 PMID: 9617810
  56. Hobo, T.; Kowyama, Y.; Hattori, T. A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription. Proc. Natl. Acad. Sci. USA, 1999, 96(26), 15348-15353. doi: 10.1073/pnas.96.26.15348 PMID: 10611387
  57. Xiang, Y.; Tang, N.; Du, H.; Ye, H.; Xiong, L. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol., 2008, 148(4), 1938-1952. doi: 10.1104/pp.108.128199 PMID: 18931143
  58. Zou, M.; Guan, Y.; Ren, H.; Zhang, F.; Chen, F. A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol. Biol., 2008, 66(6), 675-683. doi: 10.1007/s11103-008-9298-4 PMID: 18236009
  59. Liu, C.; Wu, Y.; Wang, X. bZIP transcription factor OsbZIP52/RISBZ5: A potential negative regulator of cold and drought stress response in rice. Planta, 2012, 235(6), 1157-1169. doi: 10.1007/s00425-011-1564-z PMID: 22189955
  60. Zhang, M.; Liu, Y.; Cai, H.; Guo, M.; Chai, M.; She, Z.; Ye, L.; Cheng, Y.; Wang, B.; Qin, Y. The bZIP transcription factor GmbZIP15 negatively regulates salt- and drought-stress responses in soybean. Int. J. Mol. Sci., 2020, 21(20), 7778. doi: 10.3390/ijms21207778 PMID: 33096644
  61. Sirko, A.; Wawrzyńska, A.; Brzywczy, J.; Sieńko, M. Control of ABA signaling and crosstalk with other hormones by the selective degradation of pathway components. Int. J. Mol. Sci., 2021, 22(9), 4638. doi: 10.3390/ijms22094638 PMID: 33924944
  62. Salvato, F.; Loziuk, P.; Kiyota, E.; Daneluzzi, G.S.; Araújo, P.; Muddiman, D.C.; Mazzafera, P. Label-free quantitative proteomics of enriched nuclei from sugarcane (Saccharum ssp) stems in response to drought stress. Proteomics, 2019, 19(14), 1900004. doi: 10.1002/pmic.201900004 PMID: 31172662
  63. Pi, E.; Qu, L.; Hu, J.; Huang, Y.; Qiu, L.; Lu, H.; Jiang, B.; Liu, C.; Peng, T.; Zhao, Y.; Wang, H.; Tsai, S.N.; Ngai, S.; Du, L. Mechanisms of soybean roots’ tolerances to salinity revealed by proteomic and phosphoproteomic comparisons between two cultivars. Mol. Cell. Proteomics, 2016, 15(1), 266-288. doi: 10.1074/mcp.M115.051961 PMID: 26407991
  64. Chunduri, V.; Kaur, A.; Kaur, S.; Kumar, A.; Sharma, S.; Sharma, N.; Singh, P.; Kapoor, P.; Kaur, S.; Kumari, A.; Roy, J.; Kaur, J.; Garg, M. Gene expression and proteomics studies suggest an involvement of multiple pathways under day and day-night combined heat stresses during grain filling in wheat. Front. Plant Sci., 2021, 12, 660446. doi: 10.3389/fpls.2021.660446 PMID: 34135923
  65. Marques, D.N.; Stolze, S.C.; Harzen, A.; Nogueira, M.L.; Batagin-Piotto, K.D.; Piotto, F.A.; Mason, C.; Azevedo, R.A.; Nakagami, H. Comparative phosphoproteomic analysis of tomato genotypes with contrasting cadmium tolerance. Plant Cell Rep., 2021, 40(10), 2001-2008. doi: 10.1007/s00299-021-02774-6 PMID: 34410462
  66. Xu, Z.; Wang, F.; Ma, Y.; Dang, H.; Hu, X. Transcription factor SlAREB1 is involved in the antioxidant regulation under saline-alkaline stress in tomato. Antioxidants, 2022, 11(9), 1673. doi: 10.3390/antiox11091673 PMID: 36139748
  67. Das, P.; Lakra, N.; Nutan, K.K.; Singla-Pareek, S.L.; Pareek, A. A unique bZIP transcription factor imparting multiple stress tolerance in Rice. Rice (N. Y.), 2019, 12(1), 58. doi: 10.1186/s12284-019-0316-8 PMID: 31375941
  68. Sharma, A.; Shahzad, B.; Kumar, V.; Kohli, S.K.; Sidhu, G.P.S.; Bali, A.S.; Handa, N.; Kapoor, D.; Bhardwaj, R.; Zheng, B. Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules, 2019, 9(7), 285. doi: 10.3390/biom9070285 PMID: 31319576
  69. Wu, Q.; Meng, Y.T.; Feng, Z.H.; Shen, R.F.; Zhu, X.F. The endo‐beta mannase MAN7 contributes to cadmium tolerance by modulating root cell wall binding capacity in Arabidopsis thaliana. J. Integr. Plant Biol., 2023, 65(7), 1670-1686. doi: 10.1111/jipb.13487 PMID: 36965189
  70. Lu, Z.; Qiu, W.; Jin, K.; Yu, M.; Han, X.; He, X.; Wu, L.; Wu, C.; Zhuo, R. Identification and analysis of bZIP family genes in Sedum plumbizincicola and their potential roles in response to cadmium stress. Front Plant Sci., 2022, 13, 859386.
  71. Farinati, S.; DalCorso, G.; Varotto, S.; Furini, A. The Brassica juncea BjCdR15, an ortholog of Arabidopsis TGA3, is a regulator of cadmium uptake, transport and accumulation in shoots and confers cadmium tolerance in transgenic plants. New Phytol., 2010, 185(4), 964-978. doi: 10.1111/j.1469-8137.2009.03132.x PMID: 20028476
  72. Cai, W.; Yang, Y.; Wang, W.; Guo, G.; Liu, W.; Bi, C. Overexpression of a wheat (Triticum aestivum L.) bZIP transcription factor gene, TabZIP6, decreased the freezing tolerance of transgenic Arabidopsis seedlings by down-regulating the expression of CBFs. Plant Physiol. Biochem., 2018, 124, 100-111. doi: 10.1016/j.plaphy.2018.01.008 PMID: 29351891
  73. Marques, D.N.; Barros, N.L.F.; de Souza, C.R.B. Does translationally controlled tumor protein (TCTP) have the potential to produce crops with increased growth and tolerance to environmental stresses? Plant Cell Rep., 2023, 42(4), 821-824. doi: 10.1007/s00299-023-02985-z PMID: 36723675
  74. Huang, X.S.; Liu, J.H.; Chen, X.J. Overexpression of PtrABF gene, a bZIP transcription factor isolated from Poncirus trifoliata, enhances dehydration and drought tolerance in tobacco via scavenging ROS and modulating expression of stress-responsive genes. BMC Plant Biol., 2010, 10(1), 230. doi: 10.1186/1471-2229-10-230 PMID: 20973995
  75. Asano, T.; Hayashi, N.; Kikuchi, S.; Ohsugi, R. CDPK-mediated abiotic stress signaling. Plant Signal. Behav., 2012, 7(7), 817-821. doi: 10.4161/psb.20351 PMID: 22751324
  76. Lata, C.; Prasad, M. Role of DREBs in regulation of abiotic stress responses in plants. J. Exp. Bot., 2011, 62(14), 4731-4748. doi: 10.1093/jxb/err210 PMID: 21737415
  77. Barros, N.; da Silva, D.; Marques, D.; de Brito, F.; dos Reis, S.; de Souza, C. Heterologous expression of MeLEA3: A 10 kDa late embryogenesis abundant protein of cassava, confers tolerance to abiotic stress in Escherichia coli with recombinant protein showing in vitro chaperone activity. Protein Pept. Lett., 2015, 22(8), 689-695. doi: 10.2174/0929866522666150520145302 PMID: 25990084
  78. Chen, Y.; Li, C.; Zhang, B.; Yi, J.; Yang, Y.; Kong, C.; Lei, C.; Gong, M. The role of the late embryogenesis-abundant (LEA) protein family in development and the abiotic stress response: A comprehensive expression analysis of potato (Solanum Tuberosum). Genes, 2019, 10(2), 148. doi: 10.3390/genes10020148 PMID: 30781418
  79. Sun, Z.; Li, S.; Chen, W.; Zhang, J.; Zhang, L.; Sun, W.; Wang, Z. Plant dehydrins: Expression, regulatory networks, and protective roles in plants challenged by abiotic stress. Int. J. Mol. Sci., 2021, 22(23), 12619. doi: 10.3390/ijms222312619 PMID: 34884426
  80. Tak, H.; Mhatre, M. Cloning and molecular characterization of a putative bZIP transcription factor VvbZIP23 from Vitis vinifera. Protoplasma, 2013, 250(1), 333-345. doi: 10.1007/s00709-012-0417-3 PMID: 22610648
  81. Savary, S.; Ficke, A.; Aubertot, J.N.; Hollier, C. Crop losses due to diseases and their implications for global food production losses and food security. Food Secur., 2012, 4(4), 519-537. doi: 10.1007/s12571-012-0200-5
  82. van Loon, L.C.; Rep, M.; Pieterse, C.M.J. Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol., 2006, 44(1), 135-162. doi: 10.1146/annurev.phyto.44.070505.143425 PMID: 16602946
  83. Bacete, L.; Mélida, H.; Miedes, E.; Molina, A. Plant cell wall-mediated immunity: Cell wall changes trigger disease resistance responses. Plant J., 2018, 93(4), 614-636. doi: 10.1111/tpj.13807 PMID: 29266460
  84. Campos, M.L.; de Souza, C.M.; de Oliveira, K.B.S.; Dias, S.C.; Franco, O.L. The role of antimicrobial peptides in plant immunity. J. Exp. Bot., 2018, 69(21), 4997-5011. doi: 10.1093/jxb/ery294 PMID: 30099553
  85. Nishad, R.; Ahmed, T.; Rahman, V.J.; Kareem, A. Modulation of plant defense system in response to microbial interactions. Front. Microbiol., 2020, 11, 1298. doi: 10.3389/fmicb.2020.01298 PMID: 32719660
  86. Jones, J.D.G.; Dangl, J.L. The plant immune system. Nature, 2006, 444(7117), 323-329. doi: 10.1038/nature05286 PMID: 17108957
  87. Levine, A.; Tenhaken, R.; Dixon, R.; Lamb, C. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell, 1994, 79(4), 583-593. doi: 10.1016/0092-8674(94)90544-4 PMID: 7954825
  88. Durrant, W.E.; Dong, X. Systemic acquired resistance. Annu. Rev. Phytopathol., 2004, 42(1), 185-209. doi: 10.1146/annurev.phyto.42.040803.140421 PMID: 15283665
  89. van Loon, L.C.; Pierpoint, W.S.; Boller, T.; Conejero, V. Recommendations for naming plant pathogenesis-related proteins. Plant Mol. Biol. Report., 1994, 12(3), 245-264. doi: 10.1007/BF02668748
  90. Van Loon, L.C.; Van Strien, E.A. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant Pathol., 1999, 55(2), 85-97. doi: 10.1006/pmpp.1999.0213
  91. Wei, G.; Kloepper, J.W.; Tuzun, S. Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology, 1991, 81(12), 1508-1512. doi: 10.1094/Phyto-81-1508
  92. Ku, Y.S.; Sintaha, M.; Cheung, M.Y.; Lam, H.M. Plant hormone signaling crosstalks between biotic and abiotic stress responses. Int. J. Mol. Sci., 2018, 19(10), 3206. doi: 10.3390/ijms19103206 PMID: 30336563
  93. Meng, X.; Zhang, S. MAPK cascades in plant disease resistance signaling. Annu. Rev. Phytopathol., 2013, 51(1), 245-266. doi: 10.1146/annurev-phyto-082712-102314 PMID: 23663002
  94. Fan, W.; Dong, X. In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis. Plant Cell, 2002, 14(6), 1377-1389. doi: 10.1105/tpc.001628 PMID: 12084833
  95. Shearer, H.L.; Wang, L.; DeLong, C.; Despres, C.; Fobert, P.R. NPR1 enhances the DNA binding activity of the Arabidopsis bZIP transcription factor TGA7. This paper is one of a selection of papers published in a Special Issue from the National Research Council of Canada – Plant Biotechnology Institute. Botany, 2009, 87(6), 561-570. doi: 10.1139/B08-143
  96. Chen, J.; Mohan, R.; Zhang, Y.; Li, M.; Chen, H.; Palmer, I.A.; Chang, M.; Qi, G.; Spoel, S.H.; Mengiste, T.; Wang, D.; Liu, F.; Fu, Z.Q. NPR1 promotes its own and target gene expression in plant defense by recruiting CDK8. Plant Physiol., 2019, 181(1), 289-304. doi: 10.1104/pp.19.00124 PMID: 31110139
  97. Moon, S.J.; Park, H.J.; Kim, T.H.; Kang, J.W.; Lee, J.Y.; Cho, J.H.; Lee, J.H.; Park, D.S.; Byun, M.O.; Kim, B.G.; Shin, D. OsTGA2 confers disease resistance to rice against leaf blight by regulating expression levels of disease related genes via interaction with NH1. PLoS One, 2018, 13(11), e0206910. doi: 10.1371/journal.pone.0206910 PMID: 30444888
  98. Guo, Z.J.; Chen, X.J.; Wu, X.L.; Ling, J.Q.; Xu, P. Overexpression of the AP2/EREBP transcription factor OPBP1 enhances disease resistance and salt tolerance in tobacco. Plant Mol. Biol., 2004, 55(4), 607-618. doi: 10.1007/s11103-004-1521-3 PMID: 15604704
  99. Chen, L.; Hamada, S.; Fujiwara, M.; Zhu, T.; Thao, N.P.; Wong, H.L.; Krishna, P.; Ueda, T.; Kaku, H.; Shibuya, N.; Kawasaki, T.; Shimamoto, K. The Hop/Sti1-Hsp90 chaperone complex facilitates the maturation and transport of a PAMP receptor in rice innate immunity. Cell Host Microbe, 2010, 7(3), 185-196. doi: 10.1016/j.chom.2010.02.008 PMID: 20227662
  100. Zhang, M.; Liu, Y.; Li, Z.; She, Z.; Chai, M.; Aslam, M.; He, Q.; Huang, Y.; Chen, F.; Chen, H.; Song, S.; Wang, B.; Cai, H.; Qin, Y. The bZIP transcription factor GmbZIP15 facilitates resistance against Sclerotinia sclerotiorum and Phytophthora sojae infection in soybean. iScience, 2021, 24(6), 102642. doi: 10.1016/j.isci.2021.102642 PMID: 34151234
  101. Orellana, S.; Yañez, M.; Espinoza, A.; Verdugo, I.; González, E.; Ruiz-Lara, S.; Casaretto, J.A. The transcription factor SlAREB1 confers drought, salt stress tolerance and regulates biotic and abiotic stress-related genes in tomato. Plant Cell Environ., 2010, 33(12), 2191-2208. doi: 10.1111/j.1365-3040.2010.02220.x PMID: 20807374
  102. Zribi, I.; Ghorbel, M.; Brini, F. Pathogenesis related proteins (PRs): From cellular mechanisms to plant defense. Curr. Protein Pept. Sci., 2021, 22(5), 396-412. doi: 10.2174/1389203721999201231212736 PMID: 33390143
  103. He, Q.; Cai, H.; Bai, M.; Zhang, M.; Chen, F.; Huang, Y.; Priyadarshani, S.V.G.N.; Chai, M.; Liu, L.; Liu, Y.; Chen, H.; Qin, Y. A soybean bZIP transcription factor GmbZIP19 confers multiple biotic and abiotic stress responses in plant. Int. J. Mol. Sci., 2020, 21(13), 4701. doi: 10.3390/ijms21134701 PMID: 32630201
  104. Zhao, B.; Liu, Q.; Wang, B.; Yuan, F. Roles of phytohormones and their signaling pathways in leaf development and stress responses. J. Agric. Food Chem., 2021, 69(12), 3566-3584. doi: 10.1021/acs.jafc.0c07908 PMID: 33739096
  105. Shi, Q.M.; Yang, X.; Song, L.; Xue, H.W. Arabidopsis MSBP1 is activated by HY5 and HYH and is involved in photomorphogenesis and brassinosteroid sensitivity regulation. Mol. Plant, 2011, 4(6), 1092-1104. doi: 10.1093/mp/ssr049 PMID: 21715650
  106. Alonso, R.; Oñate-Sánchez, L.; Weltmeier, F.; Ehlert, A.; Diaz, I.; Dietrich, K.; Vicente-Carbajosa, J.; Dröge-Laser, W. A pivotal role of the basic leucine zipper transcription factor bZIP53 in the regulation of Arabidopsis seed maturation gene expression based on heterodimerization and protein complex formation. Plant Cell, 2009, 21(6), 1747-1761. doi: 10.1105/tpc.108.062968 PMID: 19531597
  107. An, P.; Li, X.; Liu, T.; Shui, Z.; Chen, M.; Gao, X.; Wang, Z. The identification of broomcorn millet bZIP transcription factors, which regulate growth and development to enhance stress tolerance and seed germination. Int. J. Mol. Sci., 2022, 23(12), 6448. doi: 10.3390/ijms23126448 PMID: 35742892
  108. Yang, J.; Wang, M.; Li, W.; He, X.; Teng, W.; Ma, W.; Zhao, X.; Hu, M.; Li, H.; Zhang, Y.; Tong, Y. Reducing expression of a nitrate‐responsive BZIP transcription factor increases grain yield and N use in wheat. Plant Biotechnol. J., 2019, 17(9), 1823-1833. doi: 10.1111/pbi.13103 PMID: 30811829
  109. Lv, H.; Li, X.; Li, H.; Hu, Y.; Liu, H.; Wen, S.; Li, Y.; Liu, Y.; Huang, H.; Yu, G.; Huang, Y.; Zhang, J. Gibberellin induced transcription factor bZIP53 regulates CesA1 expression in maize kernels. PLoS One, 2021, 16(3), e0244591. doi: 10.1371/journal.pone.0244591 PMID: 33730027
  110. Toledo-Ortiz, G.; Johansson, H.; Lee, K.P.; Bou-Torrent, J.; Stewart, K.; Steel, G.; Rodríguez-Concepción, M.; Halliday, K.J. The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription. PLoS Genet., 2014, 10(6), e1004416. doi: 10.1371/journal.pgen.1004416 PMID: 24922306
  111. Fukazawa, J.; Sakai, T.; Ishida, S.; Yamaguchi, I.; Kamiya, Y.; Takahashi, Y. Repression of shoot growth, a bZIP transcriptional activator, regulates cell elongation by controlling the level of gibberellins. Plant Cell, 2000, 12(6), 901-915. doi: 10.1105/tpc.12.6.901 PMID: 10852936
  112. Coomey, J.H.; MacKinnon, K.J-M.; Handakumbura, P.P.; McCahill, I.W.; Trabucco, G.M.; Mazzola, J.; Leblanc, N.A.; Kheam, R.; Hernandez-Romero, M.; Barry, K.; Liu, L.; Lee, J.E. Touch-triggered bZIP translocation regulates elongation and secondary wall biosynthesis. BioRxiv, 2021, 429573.
  113. Rook, F.; Gerrits, N.; Kortstee, A.; van, M.; Borrias, M.; Weisbeek, P.; Smeekens, S. Sucrose-specific signalling represses translation of the Arabidopsis ATB2 bZIP transcription factor gene. Plant J., 1998, 15(2), 253-263. doi: 10.1046/j.1365-313X.1998.00205.x PMID: 9721683
  114. Wiese, A.; Elzinga, N.; Wobbes, B.; Smeekens, S. A conserved upstream open reading frame mediates sucrose-induced repression of translation. Plant Cell, 2004, 16(7), 1717-1729. doi: 10.1105/tpc.019349 PMID: 15208401
  115. Jeandet, P.; Formela-Luboińska, M.; Labudda, M.; Morkunas, I. The role of sugars in plant responses to stress and their regulatory function during development. Int. J. Mol. Sci., 2022, 23(9), 5161. doi: 10.3390/ijms23095161 PMID: 35563551
  116. Thalor, S.K.; Berberich, T.; Lee, S.S.; Yang, S.H.; Zhu, X.; Imai, R.; Takahashi, Y.; Kusano, T. Deregulation of sucrose-controlled translation of a bZIP-type transcription factor results in sucrose accumulation in leaves. PLoS One, 2012, 7(3), e33111. doi: 10.1371/journal.pone.0033111 PMID: 22457737
  117. Shekhawat, U.K.S.; Ganapathi, T.R. Transgenic banana plants overexpressing MusabZIP53 display severe growth retardation with enhanced sucrose and polyphenol oxidase activity. Plant Cell Tissue Organ Cult., 2014, 116(3), 387-402. doi: 10.1007/s11240-013-0414-z
  118. Sagor, G.H.M.; Berberich, T.; Tanaka, S.; Nishiyama, M.; Kanayama, Y.; Kojima, S.; Muramoto, K.; Kusano, T. A novel strategy to produce sweeter tomato fruits with high sugar contents by fruit-specific expression of a single bZIP transcription factor gene. Plant Biotechnol. J., 2016, 14(4), 1116-1126. doi: 10.1111/pbi.12480 PMID: 26402509
  119. Nguyen, N.H.; Bui, T.P.; Le, N.T.; Nguyen, C.X.; Le, M.T.T.; Dao, N.T.; Phan, Q.; Van Le, T.; To, H.M.T.; Pham, N.B.; Chu, H.H.; Do, P.T. Disrupting Sc-uORFs of a transcription factor bZIP1 using CRISPR/Cas9 enhances sugar and amino acid contents in tomato (Solanum lycopersicum). Planta, 2023, 257(3), 57. doi: 10.1007/s00425-023-04089-0 PMID: 36795295
  120. Chen, Q.; Tang, Y.M.; Wang, Y.; Sun, B.; Chen, T.; Lei, D.Y.; Zhang, F.; Luo, Y.; Zhang, Y.; Wang, X.R.; Tang, H.R. Enhance sucrose accumulation in strawberry fruits by eliminating the translational repression of FabZIPs1.1. Sci. Hortic., 2020, 259, 108850. doi: 10.1016/j.scienta.2019.108850
  121. Shin, D.H.; Choi, M.; Kim, K.; Bang, G.; Cho, M.; Choi, S.B.; Choi, G.; Park, Y.I. HY5 regulates anthocyanin biosynthesis by inducing the transcriptional activation of the MYB75/PAP1 transcription factor in Arabidopsis. FEBS Lett., 2013, 587(10), 1543-1547. doi: 10.1016/j.febslet.2013.03.037 PMID: 23583450
  122. Chen, X.; Yao, Q.; Gao, X.; Jiang, C.; Harberd, N.P.; Fu, X. Shoot-to-root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition. Curr. Biol., 2016, 26(5), 640-646. doi: 10.1016/j.cub.2015.12.066 PMID: 26877080
  123. Chen, S.; Ma, T.; Song, S.; Li, X.; Fu, P.; Wu, W.; Liu, J.; Gao, Y.; Ye, W.; Dry, I.B.; Lu, J. Arabidopsis downy mildew effector HaRxLL470 suppresses plant immunity by attenuating the DNA‐binding activity of bZIP transcription factor HY5. New Phytol., 2021, 230(4), 1562-1577. doi: 10.1111/nph.17280 PMID: 33586184
  124. Tu, M.; Fang, J.; Zhao, R.; Liu, X.; Yin, W.; Wang, Y.; Wang, X.; Wang, X.; Fang, Y. CRISPR/Cas9-mediated mutagenesis of VvbZIP36 promotes anthocyanin accumulation in grapevine (Vitis vinifera). Hortic. Res., 2022, 9, uhac022. doi: 10.1093/hr/uhac022 PMID: 35184164
  125. Xu, Z.; Wang, J.; Ma, Y.; Wang, F.; Wang, J.; Zhang, Y.; Hu, X. The bZIP transcription factor SlAREB1 regulates anthocyanin biosynthesis in response to low temperature in tomato. Plant J., 2023, 115(1), 205-219. doi: 10.1111/tpj.16224 PMID: 36999610

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers