Plant bZIP Proteins: Potential use in Agriculture - A Review
- Authors: de Souza C.1, Serrão C.2, Barros N.3, dos Reis S.4, Marques D.5
-
Affiliations:
- Instituto de Ciências Biológicas,, Universidade Federal do Pará (UFPA),
- Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA
- Departamento de Genética,, Universidade Federal do Rio Grande do Sul (UFRGS)
- Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará (UEPA)
- Departamento de Genética,, Universidade de São Paulo (USP), Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ),
- Issue: Vol 25, No 2 (2024)
- Pages: 107-119
- Section: Life Sciences
- URL: https://kazanmedjournal.ru/1389-2037/article/view/645517
- DOI: https://doi.org/10.2174/0113892037261763230925034348
- ID: 645517
Cite item
Full Text
Abstract
With global climate changes and the increased demand for food due to expected world population growth, genetic improvement programs have aimed at producing crops with increased yield and tolerance to environmental stresses, such as drought, salinity, and pathogens. On the other hand, genetic improvement programs via biotechnology require candidate genes that confer traits of interest to be incorporated into improved crops. In this regard, genes encoding transcription factors (TFs) can be promising since they are proteins that transcriptionally regulate the expression of target genes related to the most diverse roles in the plant, including defense against stresses. Among TFs, bZIP (basic leucine zipper) proteins regulate many developmental and physiological processes in the plant, such as seed formation, fruit ripening, nutrient assimilation, and defense response to abiotic and biotic stresses. In this review, we aim to highlight the main advances in the potential use of bZIP TFs in the genetic improvement of crops. We address this potential mainly regarding crop tolerance to stresses and other agricultural traits, such as increased yield and fruit features.
About the authors
Cláudia de Souza
Instituto de Ciências Biológicas,, Universidade Federal do Pará (UFPA),
Author for correspondence.
Email: info@benthamscience.net
Cleyson Serrão
Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA
Email: info@benthamscience.net
Nicolle Barros
Departamento de Genética,, Universidade Federal do Rio Grande do Sul (UFRGS)
Email: info@benthamscience.net
Sávio dos Reis
Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará (UEPA)
Email: info@benthamscience.net
Deyvid Marques
Departamento de Genética,, Universidade de São Paulo (USP), Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ),
Email: info@benthamscience.net
References
- Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate trends and global crop production since 1980. Science, 2011, 333(6042), 616-620. doi: 10.1126/science.1204531 PMID: 21551030
- Nykiel, M.; Gietler, M.; Fidler, J.; Prabucka, B.; Rybarczyk-Płońska, A.; Graska, J.; Boguszewska-Mańkowska, D.; Muszyńska, E.; Morkunas, I.; Labudda, M. Signal transduction in cereal plants struggling with environmental stresses: From perception to response. Plants, 2022, 11(8), 1009. doi: 10.3390/plants11081009 PMID: 35448737
- Ji, X.; Liu, G.; Liu, Y.; Zheng, L.; Nie, X.; Wang, Y. The bZIP protein from Tamarix hispida, ThbZIP1, is ACGT elements binding factor that enhances abiotic stress signaling in transgenic Arabidopsis. BMC Plant Biol., 2013, 13(1), 151. doi: 10.1186/1471-2229-13-151 PMID: 24093718
- Li, X.; Feng, B.; Zhang, F.; Tang, Y.; Zhang, L.; Ma, L.; Zhao, C.; Gao, S. Bioinformatic analyses of subgroup-A members of the wheat bZIP transcription factor family and functional identification of TabZIP174 involved in drought stress response. Front. Plant Sci., 2016, 7, 1643. doi: 10.3389/fpls.2016.01643 PMID: 27899926
- Hsieh, T.H.; Li, C.W.; Su, R.C.; Cheng, C.P.; Sanjaya,; Tsai, Y.C.; Chan, M.T. A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response. Planta, 2010, 231(6), 1459-1473. doi: 10.1007/s00425-010-1147-4 PMID: 20358223
- Li, X.; Fan, S.; Hu, W.; Liu, G.; Wei, Y.; He, C.; Shi, H. Two cassava basic leucine zipper (bZIP) transcription factors (MebZIP3 and MebZIP5) confer disease resistance against cassava bacterial blight. Front. Plant Sci., 2017, 8, 2110. doi: 10.3389/fpls.2017.02110 PMID: 29276527
- Marques, D.N.; Reis, S.P.; de Souza, C.R.B. Plant NAC transcription factors responsive to abiotic stresses. Plant Gene, 2017, 11, 170-179. doi: 10.1016/j.plgene.2017.06.003
- Baillo, E.H.; Kimotho, R.N.; Zhang, Z.; Xu, P. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes, 2019, 10(10), 771. doi: 10.3390/genes10100771 PMID: 31575043
- Chai, M.; Fan, R.; Huang, Y.; Jiang, X.; Wai, M.H.; Yang, Q.; Su, H.; Liu, K.; Ma, S.; Chen, Z.; Wang, F.; Qin, Y.; Cai, H. GmbZIP152, a soybean bZIP transcription factor, confers multiple biotic and abiotic stress responses in plant. Int. J. Mol. Sci., 2022, 23(18), 10935. doi: 10.3390/ijms231810935 PMID: 36142886
- Yang, S.; Zhang, X.; Zhang, X.; Bi, Y.; Gao, W. A bZIP transcription factor, PqbZIP1, is involved in the plant defense response of American ginseng. PeerJ, 2022, 10, e12939. doi: 10.7717/peerj.12939 PMID: 35282281
- Weising, K.; Kahl, G. Towards an understanding of plant gene regulation: The action of nuclear factors. Z. Naturforsch. C J. Biosci., 1991, 46(1-2), 1-11. doi: 10.1515/znc-1991-1-202
- Schwechheimer, C.; Zourelidou, M.; Bevan, M.W. Plant transcription factor studies. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1998, 49(1), 127-150. doi: 10.1146/annurev.arplant.49.1.127 PMID: 15012230
- Gai, W.X.; Ma, X.; Qiao, Y.M.; Shi, B.H.; Ul Haq, S.; Li, Q.H.; Wei, A.M.; Liu, K.K.; Gong, Z.H. Characterization of the bZIP transcription factor family in pepper (Capsicum annuum L.): CabZIP25 positively modulates the salt tolerance. Front Plant Sci., 2020, 11, 139.
- An, J.P.; Qu, F.J.; Yao, J.F.; Wang, X.N.; You, C.X.; Wang, X.F.; Hao, Y.J. The bZIP transcription factor MdHY5 regulates anthocyanin accumulation and nitrate assimilation in apple. Hortic. Res., 2017, 4(1), 17023. doi: 10.1038/hortres.2017.23 PMID: 28611922
- Pontes, L.C.G.; Cardoso, C.M.Y.; Callegari, D.M.; dos Reis, S.P.; do Socorro Alves Namias, É.; da Cunha Ferreira, S.; de Souza, C.R.B. A cassava CPRF-2-like bZIP transcription factor showed increased transcript levels during light treatment. Protein Pept. Lett., 2020, 27(9), 904-914. doi: 10.2174/0929866527666200420110338 PMID: 32310038
- Fuhrmann-Aoyagi, M.B.; de Fátima Ruas, C.; Barbosa, E.G.G.; Braga, P.; Moraes, L.A.C.; de Oliveira, A.C.B.; Kanamori, N.; Yamaguchi-Shinozaki, K.; Nakashima, K.; Nepomuceno, A.L.; Mertz-Henning, L.M. Constitutive expression of Arabidopsis bZIP transcription factor AREB1 activates cross-signaling responses in soybean under drought and flooding stresses. J. Plant Physiol., 2021, 257, 153338. doi: 10.1016/j.jplph.2020.153338 PMID: 33401097
- Wang, H.; Zhang, Y.; Norris, A.; Jiang, C.Z. S1-bZIP transcription factors play important roles in the regulation of fruit quality and stress response. Front. Plant Sci., 2022, 12, 802802. doi: 10.3389/fpls.2021.802802 PMID: 35095974
- Vinson, C.R.; Sigler, P.B.; McKnight, S.L. Scissors-grip model for DNA recognition by a family of leucine zipper proteins. Science, 1989, 246(4932), 911-916. doi: 10.1126/science.2683088 PMID: 2683088
- Jakoby, M.; Weisshaar, B.; Dröge-Laser, W.; Vicente-Carbajosa, J.; Tiedemann, J.; Kroj, T.; Parcy, F. bZIP transcription factors in Arabidopsis. Trends Plant Sci., 2002, 7(3), 106-111. doi: 10.1016/S1360-1385(01)02223-3 PMID: 11906833
- Vinson, C.R.; Hai, T.; Boyd, S.M. Dimerization specificity of the leucine zipper-containing bZIP motif on DNA binding: Prediction and rational design. Genes Dev., 1993, 7(6), 1047-1058. doi: 10.1101/gad.7.6.1047 PMID: 8504929
- Sprenger-Haussels, M.; Weisshaar, B. Transactivation properties of parsley proline-rich bZIP transcription factors. Plant J., 2000, 22(1), 1-8. doi: 10.1046/j.1365-313x.2000.00687.x PMID: 10792815
- Clauss, I.; Chu, M.; Zhao, J.L.; Glimcher, L.H. The basic domain/leucine zipper protein hXBP-1 preferentially binds to and transactivates CRE-like sequences containing an ACGT core. Nucleic Acids Res., 1996, 24(10), 1855-1864. doi: 10.1093/nar/24.10.1855 PMID: 8657566
- Azeem, F.; Tahir, H.; Ijaz, U.; Shaheen, T. A genome-wide comparative analysis of bZIP transcription factors in G. arboreum and G. raimondii (Diploid ancestors of present-day cotton). Physiol. Mol. Biol. Plants, 2020, 26(3), 433-444. doi: 10.1007/s12298-020-00771-9 PMID: 32205921
- Joo, H.; Baek, W.; Lim, C.W.; Lee, S.C. Post-translational modifications of bZIP transcription factors in abscisic acid signaling and drought responses. Curr. Genomics, 2021, 22(1), 4-15. doi: 10.2174/18755488MTEx6OTQj0 PMID: 34045920
- Foster, R.; Izawa, T.; Chua, N.H. Plant bZIP proteins gather at ACGT elements. FASEB J., 1994, 8(2), 192-200. doi: 10.1096/fasebj.8.2.8119490 PMID: 8119490
- Landschulz, W.H.; Johnson, P.F.; McKnight, S.L. The leucine zipper: A hypothetical structure common to a new class of DNA binding proteins. Science, 1988, 240(4860), 1759-1764. doi: 10.1126/science.3289117 PMID: 3289117
- Nijhawan, A.; Jain, M.; Tyagi, A.K.; Khurana, J.P. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol., 2008, 146(2), 323-324. doi: 10.1104/pp.107.112821 PMID: 18065552
- Hai, T.; Curran, T. Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc. Natl. Acad. Sci. USA, 1991, 88(9), 3720-3724. doi: 10.1073/pnas.88.9.3720 PMID: 1827203
- Ellenberger, T.E.; Brandl, C.J.; Struhl, K.; Harrison, S.C. The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted α Helices: Crystal structure of the protein-DNA complex. Cell, 1992, 71(7), 1223-1237. doi: 10.1016/S0092-8674(05)80070-4 PMID: 1473154
- Amoutzias, G.D.; Robertson, D.L.; Van de Peer, Y.; Oliver, S.G. Choose your partners: Dimerization in eukaryotic transcription factors. Trends Biochem. Sci., 2008, 33(5), 220-229. doi: 10.1016/j.tibs.2008.02.002 PMID: 18406148
- Ehlert, A.; Weltmeier, F.; Wang, X.; Mayer, C.S.; Smeekens, S.; Vicente-Carbajosa, J.; Dröge-Laser, W. Two-hybrid protein-protein interaction analysis in Arabidopsis protoplasts: Establishment of a heterodimerization map of group C and group S bZIP transcription factors. Plant J., 2006, 46(5), 890-900. doi: 10.1111/j.1365-313X.2006.02731.x PMID: 16709202
- Weltmeier, F.; Ehlert, A.; Mayer, C.S.; Dietrich, K.; Wang, X.; Schütze, K.; Alonso, R.; Harter, K.; Vicente-Carbajosa, J.; Dröge-Laser, W. Combinatorial control of Arabidopsis proline dehydrogenase transcription by specific heterodimerisation of bZIP transcription factors. EMBO J., 2006, 25(13), 3133-3143. doi: 10.1038/sj.emboj.7601206 PMID: 16810321
- Feng, Y.; Wang, Y.; Zhang, G.; Gan, Z.; Gao, M.; Lv, J.; Wu, T.; Zhang, X.; Xu, X.; Yang, S.; Han, Z. Group‐C/S1 bZIP heterodimers regulate MdIPT5b to negatively modulate drought tolerance in apple species. Plant J., 2021, 107(2), 399-417. doi: 10.1111/tpj.15296 PMID: 33905154
- Hartmann, L.; Pedrotti, L.; Weiste, C.; Fekete, A.; Schierstaedt, J.; Göttler, J.; Kempa, S.; Krischke, M.; Dietrich, K.; Mueller, M.J.; Vicente-Carbajosa, J.; Hanson, J.; Dröge-Laser, W. Crosstalk between two bZIP signaling pathways orchestrates salt-induced metabolic reprogramming in Arabidopsis roots. Plant Cell, 2015, 27(8), 2244-2260. doi: 10.1105/tpc.15.00163 PMID: 26276836
- Zhong, L.; Chen, D.; Min, D.; Li, W.; Xu, Z.; Zhou, Y.; Li, L.; Chen, M.; Ma, Y. AtTGA4, a bZIP transcription factor, confers drought resistance by enhancing nitrate transport and assimilation in Arabidopsis thaliana. Biochem. Biophys. Res. Commun., 2015, 457(3), 433-439. doi: 10.1016/j.bbrc.2015.01.009 PMID: 25596127
- Assunção, A.G.L.; Herrero, E.; Lin, Y.F.; Huettel, B.; Talukdar, S.; Smaczniak, C.; Immink, R.G.H.; van Eldik, M.; Fiers, M.; Schat, H.; Aarts, M.G.M. Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proc. Natl. Acad. Sci. USA, 2010, 107(22), 10296-10301. doi: 10.1073/pnas.1004788107 PMID: 20479230
- Luang, S.; Sornaraj, P.; Bazanova, N.; Jia, W.; Eini, O.; Hussain, S.S.; Kovalchuk, N.; Agarwal, P.K.; Hrmova, M.; Lopato, S. The wheat TabZIP2 transcription factor is activated by the nutrient starvation-responsive SnRK3/CIPK protein kinase. Plant Mol. Biol., 2018, 96(6), 543-561. doi: 10.1007/s11103-018-0713-1 PMID: 29564697
- Chang, Y.; Nguyen, B.H.; Xie, Y.; Xiao, B.; Tang, N.; Zhu, W.; Mou, T.; Xiong, L. Co-overexpression of the constitutively active form of OsbZIP46 and ABA-activated protein kinase SAPK6 improves drought and temperature stress resistance in rice. Front. Plant Sci., 2017, 8, 1102. doi: 10.3389/fpls.2017.01102 PMID: 28694815
- Guan, Y.; Ren, H.; Xie, H.; Ma, Z.; Chen, F. Identification and characterization of bZIP-type transcription factors involved in carrot (Daucus carota L.) somatic embryogenesis. Plant J., 2009, 60(2), 207-217. doi: 10.1111/j.1365-313X.2009.03948.x PMID: 19519801
- Abe, M.; Kobayashi, Y.; Yamamoto, S.; Daimon, Y.; Yamaguchi, A.; Ikeda, Y.; Ichinoki, H.; Notaguchi, M.; Goto, K.; Araki, T.FD a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science, 2005, 309(5737), 1052-1056. doi: 10.1126/science.1115983 PMID: 16099979
- Iven, T.; Strathmann, A.; Böttner, S.; Zwafink, T.; Heinekamp, T.; Guivarch, A.; Roitsch, T.; Dröge-Laser, W. Homo- and heterodimers of tobacco bZIP proteins counteract as positive or negative regulators of transcription during pollen development. Plant J., 2010, 63(1) doi: 10.1111/j.1365-313X.2010.04230.x PMID: 20409000
- Huang, X.; Ouyang, X.; Yang, P.; Lau, O.S.; Li, G.; Li, J.; Chen, H.; Deng, X.W. Arabidopsis FHY3 and HY5 positively mediate induction of COP1 transcription in response to photomorphogenic UV-B light. Plant Cell, 2012, 24(11), 4590-4606. doi: 10.1105/tpc.112.103994 PMID: 23150635
- Smykowski, A.; Zimmermann, P.; Zentgraf, U. G-Box binding factor1 reduces CATALASE2 expression and regulates the onset of leaf senescence in Arabidopsis. Plant Physiol., 2010, 153(3), 1321-1331. doi: 10.1104/pp.110.157180 PMID: 20484024
- Dröge-Laser, W.; Snoek, B.L.; Snel, B.; Weiste, C. The Arabidopsis bZIP transcription factor family an update. Curr. Opin. Plant Biol., 2018, 45(Pt A), 36-49. doi: 10.1016/j.pbi.2018.05.001 PMID: 29860175
- Ji, Q.; Zhang, L.; Wang, Y.; Wang, J. Genome-wide analysis of basic leucine zipper transcription factor families in Arabidopsis thaliana, Oryza sativa and Populus trichocarpa. J. Shanghai Univ.(English Edition), 2009, 13(2), 174-182. doi: 10.1007/s11741-009-0216-3
- Wei, K.; Chen, J.; Wang, Y.; Chen, Y.; Chen, S.; Lin, Y.; Pan, S.; Zhong, X.; Xie, D. Genome-wide analysis of bZIP-encoding genes in maize. DNA Res., 2012, 19(6), 463-476. doi: 10.1093/dnares/dss026 PMID: 23103471
- Zhang, M.; Liu, Y.; Shi, H.; Guo, M.; Chai, M.; He, Q.; Yan, M.; Cao, D.; Zhao, L.; Cai, H.; Qin, Y. Evolutionary and expression analyses of soybean basic Leucine zipper transcription factor family. BMC Genomics, 2018, 19(1), 159. doi: 10.1186/s12864-018-4511-6 PMID: 29471787
- Agarwal, P.; Baranwal, V.K.; Khurana, P. Genome-wide analysis of bZIP transcription factors in wheat and functional characterization of a tabzip under abiotic stress. Sci. Rep., 2019, 9(1), 4608. doi: 10.1038/s41598-019-40659-7 PMID: 30872683
- Hu, W.; Yang, H.; Yan, Y.; Wei, Y.; Tie, W.; Ding, Z.; Zuo, J.; Peng, M.; Li, K. Genome-wide characterization and analysis of bZIP transcription factor gene family related to abiotic stress in cassava. Sci. Rep., 2016, 6(1), 22783. doi: 10.1038/srep22783 PMID: 26947924
- Chang, Q.; Lu, X.; Liu, Z.; Zheng, Z.; Yu, S. Identification and characterization of the bZIP transcription factor family in yellowhorn. J. For. Res., 2021, 32(1), 273-284. doi: 10.1007/s11676-020-01129-3
- Ang, L.H.; Chattopadhyay, S.; Wei, N.; Oyama, T.; Okada, K.; Batschauer, A.; Deng, X.W. Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol. Cell, 1998, 1(2), 213-222. doi: 10.1016/S1097-2765(00)80022-2 PMID: 9659918
- Park, S.Y.; Fung, P.; Nishimura, N.; Jensen, D.R.; Fujii, H.; Zhao, Y.; Lumba, S.; Santiago, J.; Rodrigues, A.; Chow, T.F.; Alfred, S.E.; Bonetta, D.; Finkelstein, R.; Provart, N.J.; Desveaux, D.; Rodriguez, P.L.; McCourt, P.; Zhu, J.K.; Schroeder, J.I.; Volkman, B.F.; Cutler, S.R. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science, 2009, 324(5930), 1068-1071. doi: 10.1126/science.1173041 PMID: 19407142
- Fujita, Y.; Nakashima, K.; Yoshida, T.; Katagiri, T.; Kidokoro, S.; Kanamori, N.; Umezawa, T.; Fujita, M.; Maruyama, K.; Ishiyama, K.; Kobayashi, M.; Nakasone, S.; Yamada, K.; Ito, T.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol., 2009, 50(12), 2123-2132. doi: 10.1093/pcp/pcp147 PMID: 19880399
- Banerjee, A.; Roychoudhury, A. Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress. Protoplasma, 2017, 254(1), 3-16. doi: 10.1007/s00709-015-0920-4 PMID: 26669319
- Busk, P.K.; Pagès, M. Regulation of abscisic acid-induced transcription. Plant Mol. Biol., 1998, 37(3), 425-435. doi: 10.1023/A:1006058700720 PMID: 9617810
- Hobo, T.; Kowyama, Y.; Hattori, T. A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription. Proc. Natl. Acad. Sci. USA, 1999, 96(26), 15348-15353. doi: 10.1073/pnas.96.26.15348 PMID: 10611387
- Xiang, Y.; Tang, N.; Du, H.; Ye, H.; Xiong, L. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol., 2008, 148(4), 1938-1952. doi: 10.1104/pp.108.128199 PMID: 18931143
- Zou, M.; Guan, Y.; Ren, H.; Zhang, F.; Chen, F. A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol. Biol., 2008, 66(6), 675-683. doi: 10.1007/s11103-008-9298-4 PMID: 18236009
- Liu, C.; Wu, Y.; Wang, X. bZIP transcription factor OsbZIP52/RISBZ5: A potential negative regulator of cold and drought stress response in rice. Planta, 2012, 235(6), 1157-1169. doi: 10.1007/s00425-011-1564-z PMID: 22189955
- Zhang, M.; Liu, Y.; Cai, H.; Guo, M.; Chai, M.; She, Z.; Ye, L.; Cheng, Y.; Wang, B.; Qin, Y. The bZIP transcription factor GmbZIP15 negatively regulates salt- and drought-stress responses in soybean. Int. J. Mol. Sci., 2020, 21(20), 7778. doi: 10.3390/ijms21207778 PMID: 33096644
- Sirko, A.; Wawrzyńska, A.; Brzywczy, J.; Sieńko, M. Control of ABA signaling and crosstalk with other hormones by the selective degradation of pathway components. Int. J. Mol. Sci., 2021, 22(9), 4638. doi: 10.3390/ijms22094638 PMID: 33924944
- Salvato, F.; Loziuk, P.; Kiyota, E.; Daneluzzi, G.S.; Araújo, P.; Muddiman, D.C.; Mazzafera, P. Label-free quantitative proteomics of enriched nuclei from sugarcane (Saccharum ssp) stems in response to drought stress. Proteomics, 2019, 19(14), 1900004. doi: 10.1002/pmic.201900004 PMID: 31172662
- Pi, E.; Qu, L.; Hu, J.; Huang, Y.; Qiu, L.; Lu, H.; Jiang, B.; Liu, C.; Peng, T.; Zhao, Y.; Wang, H.; Tsai, S.N.; Ngai, S.; Du, L. Mechanisms of soybean roots tolerances to salinity revealed by proteomic and phosphoproteomic comparisons between two cultivars. Mol. Cell. Proteomics, 2016, 15(1), 266-288. doi: 10.1074/mcp.M115.051961 PMID: 26407991
- Chunduri, V.; Kaur, A.; Kaur, S.; Kumar, A.; Sharma, S.; Sharma, N.; Singh, P.; Kapoor, P.; Kaur, S.; Kumari, A.; Roy, J.; Kaur, J.; Garg, M. Gene expression and proteomics studies suggest an involvement of multiple pathways under day and day-night combined heat stresses during grain filling in wheat. Front. Plant Sci., 2021, 12, 660446. doi: 10.3389/fpls.2021.660446 PMID: 34135923
- Marques, D.N.; Stolze, S.C.; Harzen, A.; Nogueira, M.L.; Batagin-Piotto, K.D.; Piotto, F.A.; Mason, C.; Azevedo, R.A.; Nakagami, H. Comparative phosphoproteomic analysis of tomato genotypes with contrasting cadmium tolerance. Plant Cell Rep., 2021, 40(10), 2001-2008. doi: 10.1007/s00299-021-02774-6 PMID: 34410462
- Xu, Z.; Wang, F.; Ma, Y.; Dang, H.; Hu, X. Transcription factor SlAREB1 is involved in the antioxidant regulation under saline-alkaline stress in tomato. Antioxidants, 2022, 11(9), 1673. doi: 10.3390/antiox11091673 PMID: 36139748
- Das, P.; Lakra, N.; Nutan, K.K.; Singla-Pareek, S.L.; Pareek, A. A unique bZIP transcription factor imparting multiple stress tolerance in Rice. Rice (N. Y.), 2019, 12(1), 58. doi: 10.1186/s12284-019-0316-8 PMID: 31375941
- Sharma, A.; Shahzad, B.; Kumar, V.; Kohli, S.K.; Sidhu, G.P.S.; Bali, A.S.; Handa, N.; Kapoor, D.; Bhardwaj, R.; Zheng, B. Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules, 2019, 9(7), 285. doi: 10.3390/biom9070285 PMID: 31319576
- Wu, Q.; Meng, Y.T.; Feng, Z.H.; Shen, R.F.; Zhu, X.F. The endo‐beta mannase MAN7 contributes to cadmium tolerance by modulating root cell wall binding capacity in Arabidopsis thaliana. J. Integr. Plant Biol., 2023, 65(7), 1670-1686. doi: 10.1111/jipb.13487 PMID: 36965189
- Lu, Z.; Qiu, W.; Jin, K.; Yu, M.; Han, X.; He, X.; Wu, L.; Wu, C.; Zhuo, R. Identification and analysis of bZIP family genes in Sedum plumbizincicola and their potential roles in response to cadmium stress. Front Plant Sci., 2022, 13, 859386.
- Farinati, S.; DalCorso, G.; Varotto, S.; Furini, A. The Brassica juncea BjCdR15, an ortholog of Arabidopsis TGA3, is a regulator of cadmium uptake, transport and accumulation in shoots and confers cadmium tolerance in transgenic plants. New Phytol., 2010, 185(4), 964-978. doi: 10.1111/j.1469-8137.2009.03132.x PMID: 20028476
- Cai, W.; Yang, Y.; Wang, W.; Guo, G.; Liu, W.; Bi, C. Overexpression of a wheat (Triticum aestivum L.) bZIP transcription factor gene, TabZIP6, decreased the freezing tolerance of transgenic Arabidopsis seedlings by down-regulating the expression of CBFs. Plant Physiol. Biochem., 2018, 124, 100-111. doi: 10.1016/j.plaphy.2018.01.008 PMID: 29351891
- Marques, D.N.; Barros, N.L.F.; de Souza, C.R.B. Does translationally controlled tumor protein (TCTP) have the potential to produce crops with increased growth and tolerance to environmental stresses? Plant Cell Rep., 2023, 42(4), 821-824. doi: 10.1007/s00299-023-02985-z PMID: 36723675
- Huang, X.S.; Liu, J.H.; Chen, X.J. Overexpression of PtrABF gene, a bZIP transcription factor isolated from Poncirus trifoliata, enhances dehydration and drought tolerance in tobacco via scavenging ROS and modulating expression of stress-responsive genes. BMC Plant Biol., 2010, 10(1), 230. doi: 10.1186/1471-2229-10-230 PMID: 20973995
- Asano, T.; Hayashi, N.; Kikuchi, S.; Ohsugi, R. CDPK-mediated abiotic stress signaling. Plant Signal. Behav., 2012, 7(7), 817-821. doi: 10.4161/psb.20351 PMID: 22751324
- Lata, C.; Prasad, M. Role of DREBs in regulation of abiotic stress responses in plants. J. Exp. Bot., 2011, 62(14), 4731-4748. doi: 10.1093/jxb/err210 PMID: 21737415
- Barros, N.; da Silva, D.; Marques, D.; de Brito, F.; dos Reis, S.; de Souza, C. Heterologous expression of MeLEA3: A 10 kDa late embryogenesis abundant protein of cassava, confers tolerance to abiotic stress in Escherichia coli with recombinant protein showing in vitro chaperone activity. Protein Pept. Lett., 2015, 22(8), 689-695. doi: 10.2174/0929866522666150520145302 PMID: 25990084
- Chen, Y.; Li, C.; Zhang, B.; Yi, J.; Yang, Y.; Kong, C.; Lei, C.; Gong, M. The role of the late embryogenesis-abundant (LEA) protein family in development and the abiotic stress response: A comprehensive expression analysis of potato (Solanum Tuberosum). Genes, 2019, 10(2), 148. doi: 10.3390/genes10020148 PMID: 30781418
- Sun, Z.; Li, S.; Chen, W.; Zhang, J.; Zhang, L.; Sun, W.; Wang, Z. Plant dehydrins: Expression, regulatory networks, and protective roles in plants challenged by abiotic stress. Int. J. Mol. Sci., 2021, 22(23), 12619. doi: 10.3390/ijms222312619 PMID: 34884426
- Tak, H.; Mhatre, M. Cloning and molecular characterization of a putative bZIP transcription factor VvbZIP23 from Vitis vinifera. Protoplasma, 2013, 250(1), 333-345. doi: 10.1007/s00709-012-0417-3 PMID: 22610648
- Savary, S.; Ficke, A.; Aubertot, J.N.; Hollier, C. Crop losses due to diseases and their implications for global food production losses and food security. Food Secur., 2012, 4(4), 519-537. doi: 10.1007/s12571-012-0200-5
- van Loon, L.C.; Rep, M.; Pieterse, C.M.J. Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol., 2006, 44(1), 135-162. doi: 10.1146/annurev.phyto.44.070505.143425 PMID: 16602946
- Bacete, L.; Mélida, H.; Miedes, E.; Molina, A. Plant cell wall-mediated immunity: Cell wall changes trigger disease resistance responses. Plant J., 2018, 93(4), 614-636. doi: 10.1111/tpj.13807 PMID: 29266460
- Campos, M.L.; de Souza, C.M.; de Oliveira, K.B.S.; Dias, S.C.; Franco, O.L. The role of antimicrobial peptides in plant immunity. J. Exp. Bot., 2018, 69(21), 4997-5011. doi: 10.1093/jxb/ery294 PMID: 30099553
- Nishad, R.; Ahmed, T.; Rahman, V.J.; Kareem, A. Modulation of plant defense system in response to microbial interactions. Front. Microbiol., 2020, 11, 1298. doi: 10.3389/fmicb.2020.01298 PMID: 32719660
- Jones, J.D.G.; Dangl, J.L. The plant immune system. Nature, 2006, 444(7117), 323-329. doi: 10.1038/nature05286 PMID: 17108957
- Levine, A.; Tenhaken, R.; Dixon, R.; Lamb, C. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell, 1994, 79(4), 583-593. doi: 10.1016/0092-8674(94)90544-4 PMID: 7954825
- Durrant, W.E.; Dong, X. Systemic acquired resistance. Annu. Rev. Phytopathol., 2004, 42(1), 185-209. doi: 10.1146/annurev.phyto.42.040803.140421 PMID: 15283665
- van Loon, L.C.; Pierpoint, W.S.; Boller, T.; Conejero, V. Recommendations for naming plant pathogenesis-related proteins. Plant Mol. Biol. Report., 1994, 12(3), 245-264. doi: 10.1007/BF02668748
- Van Loon, L.C.; Van Strien, E.A. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant Pathol., 1999, 55(2), 85-97. doi: 10.1006/pmpp.1999.0213
- Wei, G.; Kloepper, J.W.; Tuzun, S. Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology, 1991, 81(12), 1508-1512. doi: 10.1094/Phyto-81-1508
- Ku, Y.S.; Sintaha, M.; Cheung, M.Y.; Lam, H.M. Plant hormone signaling crosstalks between biotic and abiotic stress responses. Int. J. Mol. Sci., 2018, 19(10), 3206. doi: 10.3390/ijms19103206 PMID: 30336563
- Meng, X.; Zhang, S. MAPK cascades in plant disease resistance signaling. Annu. Rev. Phytopathol., 2013, 51(1), 245-266. doi: 10.1146/annurev-phyto-082712-102314 PMID: 23663002
- Fan, W.; Dong, X. In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis. Plant Cell, 2002, 14(6), 1377-1389. doi: 10.1105/tpc.001628 PMID: 12084833
- Shearer, H.L.; Wang, L.; DeLong, C.; Despres, C.; Fobert, P.R. NPR1 enhances the DNA binding activity of the Arabidopsis bZIP transcription factor TGA7. This paper is one of a selection of papers published in a Special Issue from the National Research Council of Canada Plant Biotechnology Institute. Botany, 2009, 87(6), 561-570. doi: 10.1139/B08-143
- Chen, J.; Mohan, R.; Zhang, Y.; Li, M.; Chen, H.; Palmer, I.A.; Chang, M.; Qi, G.; Spoel, S.H.; Mengiste, T.; Wang, D.; Liu, F.; Fu, Z.Q. NPR1 promotes its own and target gene expression in plant defense by recruiting CDK8. Plant Physiol., 2019, 181(1), 289-304. doi: 10.1104/pp.19.00124 PMID: 31110139
- Moon, S.J.; Park, H.J.; Kim, T.H.; Kang, J.W.; Lee, J.Y.; Cho, J.H.; Lee, J.H.; Park, D.S.; Byun, M.O.; Kim, B.G.; Shin, D. OsTGA2 confers disease resistance to rice against leaf blight by regulating expression levels of disease related genes via interaction with NH1. PLoS One, 2018, 13(11), e0206910. doi: 10.1371/journal.pone.0206910 PMID: 30444888
- Guo, Z.J.; Chen, X.J.; Wu, X.L.; Ling, J.Q.; Xu, P. Overexpression of the AP2/EREBP transcription factor OPBP1 enhances disease resistance and salt tolerance in tobacco. Plant Mol. Biol., 2004, 55(4), 607-618. doi: 10.1007/s11103-004-1521-3 PMID: 15604704
- Chen, L.; Hamada, S.; Fujiwara, M.; Zhu, T.; Thao, N.P.; Wong, H.L.; Krishna, P.; Ueda, T.; Kaku, H.; Shibuya, N.; Kawasaki, T.; Shimamoto, K. The Hop/Sti1-Hsp90 chaperone complex facilitates the maturation and transport of a PAMP receptor in rice innate immunity. Cell Host Microbe, 2010, 7(3), 185-196. doi: 10.1016/j.chom.2010.02.008 PMID: 20227662
- Zhang, M.; Liu, Y.; Li, Z.; She, Z.; Chai, M.; Aslam, M.; He, Q.; Huang, Y.; Chen, F.; Chen, H.; Song, S.; Wang, B.; Cai, H.; Qin, Y. The bZIP transcription factor GmbZIP15 facilitates resistance against Sclerotinia sclerotiorum and Phytophthora sojae infection in soybean. iScience, 2021, 24(6), 102642. doi: 10.1016/j.isci.2021.102642 PMID: 34151234
- Orellana, S.; Yañez, M.; Espinoza, A.; Verdugo, I.; González, E.; Ruiz-Lara, S.; Casaretto, J.A. The transcription factor SlAREB1 confers drought, salt stress tolerance and regulates biotic and abiotic stress-related genes in tomato. Plant Cell Environ., 2010, 33(12), 2191-2208. doi: 10.1111/j.1365-3040.2010.02220.x PMID: 20807374
- Zribi, I.; Ghorbel, M.; Brini, F. Pathogenesis related proteins (PRs): From cellular mechanisms to plant defense. Curr. Protein Pept. Sci., 2021, 22(5), 396-412. doi: 10.2174/1389203721999201231212736 PMID: 33390143
- He, Q.; Cai, H.; Bai, M.; Zhang, M.; Chen, F.; Huang, Y.; Priyadarshani, S.V.G.N.; Chai, M.; Liu, L.; Liu, Y.; Chen, H.; Qin, Y. A soybean bZIP transcription factor GmbZIP19 confers multiple biotic and abiotic stress responses in plant. Int. J. Mol. Sci., 2020, 21(13), 4701. doi: 10.3390/ijms21134701 PMID: 32630201
- Zhao, B.; Liu, Q.; Wang, B.; Yuan, F. Roles of phytohormones and their signaling pathways in leaf development and stress responses. J. Agric. Food Chem., 2021, 69(12), 3566-3584. doi: 10.1021/acs.jafc.0c07908 PMID: 33739096
- Shi, Q.M.; Yang, X.; Song, L.; Xue, H.W. Arabidopsis MSBP1 is activated by HY5 and HYH and is involved in photomorphogenesis and brassinosteroid sensitivity regulation. Mol. Plant, 2011, 4(6), 1092-1104. doi: 10.1093/mp/ssr049 PMID: 21715650
- Alonso, R.; Oñate-Sánchez, L.; Weltmeier, F.; Ehlert, A.; Diaz, I.; Dietrich, K.; Vicente-Carbajosa, J.; Dröge-Laser, W. A pivotal role of the basic leucine zipper transcription factor bZIP53 in the regulation of Arabidopsis seed maturation gene expression based on heterodimerization and protein complex formation. Plant Cell, 2009, 21(6), 1747-1761. doi: 10.1105/tpc.108.062968 PMID: 19531597
- An, P.; Li, X.; Liu, T.; Shui, Z.; Chen, M.; Gao, X.; Wang, Z. The identification of broomcorn millet bZIP transcription factors, which regulate growth and development to enhance stress tolerance and seed germination. Int. J. Mol. Sci., 2022, 23(12), 6448. doi: 10.3390/ijms23126448 PMID: 35742892
- Yang, J.; Wang, M.; Li, W.; He, X.; Teng, W.; Ma, W.; Zhao, X.; Hu, M.; Li, H.; Zhang, Y.; Tong, Y. Reducing expression of a nitrate‐responsive BZIP transcription factor increases grain yield and N use in wheat. Plant Biotechnol. J., 2019, 17(9), 1823-1833. doi: 10.1111/pbi.13103 PMID: 30811829
- Lv, H.; Li, X.; Li, H.; Hu, Y.; Liu, H.; Wen, S.; Li, Y.; Liu, Y.; Huang, H.; Yu, G.; Huang, Y.; Zhang, J. Gibberellin induced transcription factor bZIP53 regulates CesA1 expression in maize kernels. PLoS One, 2021, 16(3), e0244591. doi: 10.1371/journal.pone.0244591 PMID: 33730027
- Toledo-Ortiz, G.; Johansson, H.; Lee, K.P.; Bou-Torrent, J.; Stewart, K.; Steel, G.; Rodríguez-Concepción, M.; Halliday, K.J. The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription. PLoS Genet., 2014, 10(6), e1004416. doi: 10.1371/journal.pgen.1004416 PMID: 24922306
- Fukazawa, J.; Sakai, T.; Ishida, S.; Yamaguchi, I.; Kamiya, Y.; Takahashi, Y. Repression of shoot growth, a bZIP transcriptional activator, regulates cell elongation by controlling the level of gibberellins. Plant Cell, 2000, 12(6), 901-915. doi: 10.1105/tpc.12.6.901 PMID: 10852936
- Coomey, J.H.; MacKinnon, K.J-M.; Handakumbura, P.P.; McCahill, I.W.; Trabucco, G.M.; Mazzola, J.; Leblanc, N.A.; Kheam, R.; Hernandez-Romero, M.; Barry, K.; Liu, L.; Lee, J.E. Touch-triggered bZIP translocation regulates elongation and secondary wall biosynthesis. BioRxiv, 2021, 429573.
- Rook, F.; Gerrits, N.; Kortstee, A.; van, M.; Borrias, M.; Weisbeek, P.; Smeekens, S. Sucrose-specific signalling represses translation of the Arabidopsis ATB2 bZIP transcription factor gene. Plant J., 1998, 15(2), 253-263. doi: 10.1046/j.1365-313X.1998.00205.x PMID: 9721683
- Wiese, A.; Elzinga, N.; Wobbes, B.; Smeekens, S. A conserved upstream open reading frame mediates sucrose-induced repression of translation. Plant Cell, 2004, 16(7), 1717-1729. doi: 10.1105/tpc.019349 PMID: 15208401
- Jeandet, P.; Formela-Luboińska, M.; Labudda, M.; Morkunas, I. The role of sugars in plant responses to stress and their regulatory function during development. Int. J. Mol. Sci., 2022, 23(9), 5161. doi: 10.3390/ijms23095161 PMID: 35563551
- Thalor, S.K.; Berberich, T.; Lee, S.S.; Yang, S.H.; Zhu, X.; Imai, R.; Takahashi, Y.; Kusano, T. Deregulation of sucrose-controlled translation of a bZIP-type transcription factor results in sucrose accumulation in leaves. PLoS One, 2012, 7(3), e33111. doi: 10.1371/journal.pone.0033111 PMID: 22457737
- Shekhawat, U.K.S.; Ganapathi, T.R. Transgenic banana plants overexpressing MusabZIP53 display severe growth retardation with enhanced sucrose and polyphenol oxidase activity. Plant Cell Tissue Organ Cult., 2014, 116(3), 387-402. doi: 10.1007/s11240-013-0414-z
- Sagor, G.H.M.; Berberich, T.; Tanaka, S.; Nishiyama, M.; Kanayama, Y.; Kojima, S.; Muramoto, K.; Kusano, T. A novel strategy to produce sweeter tomato fruits with high sugar contents by fruit-specific expression of a single bZIP transcription factor gene. Plant Biotechnol. J., 2016, 14(4), 1116-1126. doi: 10.1111/pbi.12480 PMID: 26402509
- Nguyen, N.H.; Bui, T.P.; Le, N.T.; Nguyen, C.X.; Le, M.T.T.; Dao, N.T.; Phan, Q.; Van Le, T.; To, H.M.T.; Pham, N.B.; Chu, H.H.; Do, P.T. Disrupting Sc-uORFs of a transcription factor bZIP1 using CRISPR/Cas9 enhances sugar and amino acid contents in tomato (Solanum lycopersicum). Planta, 2023, 257(3), 57. doi: 10.1007/s00425-023-04089-0 PMID: 36795295
- Chen, Q.; Tang, Y.M.; Wang, Y.; Sun, B.; Chen, T.; Lei, D.Y.; Zhang, F.; Luo, Y.; Zhang, Y.; Wang, X.R.; Tang, H.R. Enhance sucrose accumulation in strawberry fruits by eliminating the translational repression of FabZIPs1.1. Sci. Hortic., 2020, 259, 108850. doi: 10.1016/j.scienta.2019.108850
- Shin, D.H.; Choi, M.; Kim, K.; Bang, G.; Cho, M.; Choi, S.B.; Choi, G.; Park, Y.I. HY5 regulates anthocyanin biosynthesis by inducing the transcriptional activation of the MYB75/PAP1 transcription factor in Arabidopsis. FEBS Lett., 2013, 587(10), 1543-1547. doi: 10.1016/j.febslet.2013.03.037 PMID: 23583450
- Chen, X.; Yao, Q.; Gao, X.; Jiang, C.; Harberd, N.P.; Fu, X. Shoot-to-root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition. Curr. Biol., 2016, 26(5), 640-646. doi: 10.1016/j.cub.2015.12.066 PMID: 26877080
- Chen, S.; Ma, T.; Song, S.; Li, X.; Fu, P.; Wu, W.; Liu, J.; Gao, Y.; Ye, W.; Dry, I.B.; Lu, J. Arabidopsis downy mildew effector HaRxLL470 suppresses plant immunity by attenuating the DNA‐binding activity of bZIP transcription factor HY5. New Phytol., 2021, 230(4), 1562-1577. doi: 10.1111/nph.17280 PMID: 33586184
- Tu, M.; Fang, J.; Zhao, R.; Liu, X.; Yin, W.; Wang, Y.; Wang, X.; Wang, X.; Fang, Y. CRISPR/Cas9-mediated mutagenesis of VvbZIP36 promotes anthocyanin accumulation in grapevine (Vitis vinifera). Hortic. Res., 2022, 9, uhac022. doi: 10.1093/hr/uhac022 PMID: 35184164
- Xu, Z.; Wang, J.; Ma, Y.; Wang, F.; Wang, J.; Zhang, Y.; Hu, X. The bZIP transcription factor SlAREB1 regulates anthocyanin biosynthesis in response to low temperature in tomato. Plant J., 2023, 115(1), 205-219. doi: 10.1111/tpj.16224 PMID: 36999610
Supplementary files
