Long Non-coding RNAs Influence Aging Process of Sciatic Nerves in SD Rats
- Autores: Kuang R.1, Zhang Y.1, Wu G.1, Zhu Z.1, Xu S.1, Liu X.2, Xu Y.1, Luo Y.1
-
Afiliações:
- Department of Plastic Surgery, First Affiliated Hospital of Sun Yat-sen University
- Department of Plastic Surgery, University of Tennessee Health Science Center
- Edição: Volume 27, Nº 14 (2024)
- Páginas: 2140-2150
- Seção: Chemistry
- URL: https://kazanmedjournal.ru/1386-2073/article/view/644170
- DOI: https://doi.org/10.2174/1386207326666230907115800
- ID: 644170
Citar
Texto integral
Resumo
Objectives:To investigate the long non-coding RNAs (lncRNAs) changes in the sciatic nerve (SN) in Sprague Dawley (SD) rats during aging.
Methods:Eighteen healthy SD rats were selected at the age of 1 month (1M) and 24 months (24M) and SNs were collected. High-throughput transcriptome sequencing and bioinformatics analysis were performed. Protein-protein interaction (PPI) networks and competing endogenous RNA (ceRNA) networks were established according to differentially expressed genes (DEGs).
Result:As the length of lncRNAs increased, its proportion to the total number of lncRNAs decreased. A total of 4079 DElncRNAs were identified in Con vs. 24M. GO analysis was primarily clustered in nerve and lipid metabolism, extracellular matrix, and vascularization-related fields. There were 17 nodes in the PPI network of the target genes of up-regulating genes including Itgb2, Lox, Col11a1, Wnt5a, Kras, etc. Using quantitative RT-PCR, microarray sequencing accuracy was validated. There were 169 nodes constructing the PPI network of down-regulated target genes, mainly including Col1a1, Hmgcs1, Hmgcr. CeRNA interaction networks were constructed.
Conclusion:Lipid metabolism, angiogenesis, and ECM fields might play an important role in the senescence process in SNs. Col3a1, Serpinh1, Hmgcr, and Fdps could be candidates for nerve aging research.
Palavras-chave
Sobre autores
Rui Kuang
Department of Plastic Surgery, First Affiliated Hospital of Sun Yat-sen University
Email: info@benthamscience.net
Yi Zhang
Department of Plastic Surgery, First Affiliated Hospital of Sun Yat-sen University
Email: info@benthamscience.net
Guanggeng Wu
Department of Plastic Surgery, First Affiliated Hospital of Sun Yat-sen University
Email: info@benthamscience.net
Zhaowei Zhu
Department of Plastic Surgery, First Affiliated Hospital of Sun Yat-sen University
Email: info@benthamscience.net
Shuqia Xu
Department of Plastic Surgery, First Affiliated Hospital of Sun Yat-sen University
Email: info@benthamscience.net
Xiangxia Liu
Department of Plastic Surgery, University of Tennessee Health Science Center
Autor responsável pela correspondência
Email: info@benthamscience.net
Yangbin Xu
Department of Plastic Surgery, First Affiliated Hospital of Sun Yat-sen University
Autor responsável pela correspondência
Email: info@benthamscience.net
Yunxiang Luo
Department of Plastic Surgery, First Affiliated Hospital of Sun Yat-sen University
Autor responsável pela correspondência
Email: info@benthamscience.net
Bibliografia
- Schellnegger, M.; Lin, A.C.; Hammer, N.; Kamolz, L.P. Physical activity on telomere length as a biomarker for aging: A systematic review. Sports Med. Open, 2022, 8(1), 111. doi: 10.1186/s40798-022-00503-1 PMID: 36057868
- Sardella-Silva, G.; Mietto, B.S.; Ribeiro-Resende, V.T. Four seasons for schwann cell biology, revisiting key periods: Development, homeostasis, repair, and aging. Biomolecules, 2021, 11(12), 1887. doi: 10.3390/biom11121887 PMID: 34944531
- Verdier, V.; Csárdi, G.; de Preux-Charles, A.S.; Médard, J.J.; Smit, A.B.; Verheijen, M.H.G.; Bergmann, S.; Chrast, R. Aging of myelinating glial cells predominantly affects lipid metabolism and immune response pathways. Glia, 2012, 60(5), 751-760. doi: 10.1002/glia.22305 PMID: 22337502
- Hamilton, R.; Walsh, M.; Singh, R.; Rodriguez, K.; Gao, X.; Rahman, M.M.; Chaudhuri, A.; Bhattacharya, A. Oxidative damage to myelin proteins accompanies peripheral nerve motor dysfunction in aging C57BL/6 male mice. J. Neurol. Sci., 2016, 370, 47-52. doi: 10.1016/j.jns.2016.09.021 PMID: 27772785
- Schneider-Poetsch, T.; Yoshida, M. Along the central dogma-controlling gene expression with small molecules. Annu. Rev. Biochem., 2018, 87(1), 391-420. doi: 10.1146/annurev-biochem-060614-033923 PMID: 29727582
- Glasgow, S.M.; Deneen, B. lncedin to myelin. Neuron, 2017, 93(2), 252-254. doi: 10.1016/j.neuron.2017.01.002 PMID: 28103473
- Scheib, J.; Höke, A. Advances in peripheral nerve regeneration. Nat. Rev. Neurol., 2013, 9(12), 668-676. doi: 10.1038/nrneurol.2013.227 PMID: 24217518
- Djuanda, D.; He, B.; Liu, X.; Xu, S.; Zhang, Y.; Xu, Y.; Zhu, Z. Comprehensive analysis of age-related changes in lipid metabolism and myelin sheath formation in sciatic nerves. J. Mol. Neurosci., 2021, 71(11), 2310-2323. doi: 10.1007/s12031-020-01768-5 PMID: 33492614
- Liu, JH.; Tang, Q.; Liu, XX.; Qi, J.; Zeng, RX.; Zhu, ZW.; He, B.; Xu, YB. Analysis of transcriptome sequencing of sciatic nerves in sprague-dawley rats of different ages. Neural Regen Res, 2018, 13(12), 2182-2190. doi: 10.4103/1673-5374.241469 PMID: 30323151 PMCID: PMC6199923
- Melcangi, R.C.; Azcoitia, I.; Ballabio, M.; Cavarretta, I.; Gonzalez, L.C.; Leonelli, E.; Magnaghi, V.; Veiga, S.; Garcia-Segura, L.M. Neuroactive steroids influence peripheral myelination: A promising opportunity for preventing or treating age-dependent dysfunctions of peripheral nerves. Prog. Neurobiol., 2003, 71(1), 57-66. doi: 10.1016/j.pneurobio.2003.09.003 PMID: 14611868
- Wang, Y.J.; Zhou, C.J.; Shi, Q.; Smith, N.; Li, T.F. Aging delays the regeneration process following sciatic nerve injury in rats. J. Neurotrauma, 2007, 24(5), 885-894. doi: 10.1089/neu.2006.0156 PMID: 17518542
- Fuertes-Alvarez, S.; Izeta, A. Terminal schwann cell aging: Implications for age-associated neuromuscular dysfunction. Aging Dis., 2021, 12(2), 494-514. doi: 10.14336/AD.2020.0708 PMID: 33815879
- Painter, M.W. Aging Schwann cells: Mechanisms, implications, future directions. Curr. Opin. Neurobiol., 2017, 47, 203-208. doi: 10.1016/j.conb.2017.10.022 PMID: 29161640
- Saio, S.; Konishi, K.; Hohjoh, H.; Tamura, Y.; Masutani, T.; Iddamalgoda, A.; Ichihashi, M.; Hasegawa, H.; Mizutani, K. Extracellular environment-controlled angiogenesis, and potential application for peripheral nerve regeneration. Int. J. Mol. Sci., 2021, 22(20), 11169. doi: 10.3390/ijms222011169 PMID: 34681829
- Jessen, K.R.; Mirsky, R.; Lloyd, A.C. Schwann cells: Development and role in nerve repair. Cold Spring Harb. Perspect. Biol., 2015, 7(7), a020487. doi: 10.1101/cshperspect.a020487 PMID: 25957303
- Siqueira Mietto, B.; Kroner, A.; Girolami, E.I.; Santos-Nogueira, E.; Zhang, J.; David, S. Role of IL-10 in resolution of inflammation and functional recovery after peripheral nerve injury. J. Neurosci., 2015, 35(50), 16431-16442. doi: 10.1523/JNEUROSCI.2119-15.2015 PMID: 26674868
- Arthur-Farraj, P.J.; Latouche, M.; Wilton, D.K.; Quintes, S.; Chabrol, E.; Banerjee, A.; Woodhoo, A.; Jenkins, B.; Rahman, M.; Turmaine, M.; Wicher, G.K.; Mitter, R.; Greensmith, L.; Behrens, A.; Raivich, G.; Mirsky, R.; Jessen, K.R. c-Jun reprograms Schwann cells of injured nerves to generate a repair cell essential for regeneration. Neuron, 2012, 75(4), 633-647. doi: 10.1016/j.neuron.2012.06.021 PMID: 22920255
- Fontana, X.; Hristova, M.; Da Costa, C.; Patodia, S.; Thei, L.; Makwana, M.; Spencer-Dene, B.; Latouche, M.; Mirsky, R.; Jessen, K.R.; Klein, R.; Raivich, G.; Behrens, A. c-Jun in Schwann cells promotes axonal regeneration and motoneuron survival via paracrine signaling. J. Cell Biol., 2012, 198(1), 127-141. doi: 10.1083/jcb.201205025 PMID: 22753894
- Painter, M.W.; Brosius Lutz, A.; Cheng, Y.C.; Latremoliere, A.; Duong, K.; Miller, C.M.; Posada, S.; Cobos, E.J.; Zhang, A.X.; Wagers, A.J.; Havton, L.A.; Barres, B.; Omura, T.; Woolf, C.J. Diminished Schwann cell repair responses underlie age-associated impaired axonal regeneration. Neuron, 2014, 83(2), 331-343. doi: 10.1016/j.neuron.2014.06.016 PMID: 25033179
- Liu, M.; Li, P.; Jia, Y.; Cui, Q.; Zhang, K.; Jiang, J. Role of non-coding RNAs in axon regeneration after peripheral nerve injury. Int. J. Biol. Sci., 2022, 18(8), 3435-3446. doi: 10.7150/ijbs.70290 PMID: 35637962
- Hashemi, M.; Nadafzadeh, N.; Imani, M.H.; Rajabi, R.; Ziaolhagh, S.; Bayanzadeh, S.D.; Norouzi, R.; Rafiei, R.; Koohpar, Z.K.; Raei, B.; Zandieh, M.A.; Salimimoghadam, S.; Entezari, M.; Taheriazam, A.; Alexiou, A.; Papadakis, M.; Tan, S.C. Targeting and regulation of autophagy in hepatocellular carcinoma: Revisiting the molecular interactions and mechanisms for new therapy approaches. Cell Commun. Signal., 2023, 21(1), 32. doi: 10.1186/s12964-023-01053-z PMID: 36759819
- Moghbeli, M. Molecular interactions of miR-338 during tumor progression and metastasis. Cell. Mol. Biol. Lett., 2021, 26(1), 13. doi: 10.1186/s11658-021-00257-w PMID: 33827418
- Zhang, Y.; Zhu, Z.; Liu, X.; Xu, S.; Zhang, Y.; Xu, Y.; He, B. Integrated analysis of long noncoding RNAs and mRNA expression profiles reveals the potential role of lncRNAs in early stage of post-peripheral nerve injury in Sprague-Dawley rats. Aging , 2021, 13(10), 13909-13925. doi: 10.18632/aging.202989 PMID: 33971626
- Zhang, J.; Liu, Y.; Lu, L. Emerging role of MicroRNAs in peripheral nerve system. Life Sci., 2018, 207, 227-233. doi: 10.1016/j.lfs.2018.06.011 PMID: 29894714
- Zhou, S.; Ding, F.; Gu, X. Non-coding RNAs as emerging regulators of neural injury responses and regeneration. Neurosci. Bull., 2016, 32(3), 253-264. doi: 10.1007/s12264-016-0028-7 PMID: 27037691
- Du, S.; Wu, S.; Feng, X.; Wang, B.; Xia, S.; Liang, L.; Zhang, L.; Govindarajalu, G.; Bunk, A.; Kadakia, F.; Mao, Q.; Guo, X.; Zhao, H.; Berkman, T.; Liu, T.; Li, H.; Stillman, J.; Bekker, A.; Davidson, S.; Tao, Y.X. A nerve injury-specific long noncoding RNA promotes neuropathic pain by increasing Ccl2 expression. J. Clin. Invest., 2022, 132(13), e153563. doi: 10.1172/JCI153563 PMID: 35775484
- Wang, D.; Zheng, T.; Ge, X.; Xu, J.; Feng, L.; Jiang, C.; Tao, J.; Chen, Y.; Liu, X.; Yu, B.; Zhou, S.; Zhu, J. Unfolded protein response-induced expression of long noncoding RNA Ngrl1 supports peripheral axon regeneration by activating the PI3K-Akt pathway. Exp. Neurol., 2022, 352, 114025. doi: 10.1016/j.expneurol.2022.114025 PMID: 35227685
- Yin, G.; Lin, Y.; Wang, P.; Zhou, J.; Lin, H. Upregulated lncARAT in Schwann cells promotes axonal regeneration by recruiting and activating proregenerative macrophages. Mol. Med., 2022, 28(1), 76. doi: 10.1186/s10020-022-00501-9 PMID: 35768768
- Cantuti-Castelvetri, L.; Fitzner, D.; Bosch-Queralt, M.; Weil, M.T.; Su, M.; Sen, P.; Ruhwedel, T.; Mitkovski, M.; Trendelenburg, G.; Lütjohann, D.; Möbius, W.; Simons, M. Defective cholesterol clearance limits remyelination in the aged central nervous system. Science, 2018, 359(6376), 684-688. doi: 10.1126/science.aan4183 PMID: 29301957
- Faizy, T.D.; Thaler, C.; Broocks, G.; Flottmann, F.; Leischner, H.; Kniep, H.; Nawabi, J.; Schön, G.; Stellmann, J.P.; Kemmling, A.; Reddy, R.; Heit, J.J.; Fiehler, J.; Kumar, D.; Hanning, U. The myelin water fraction serves as a marker for age-related myelin alterations in the cerebral white matter - A multiparametric MRI aging study. Front. Neurosci., 2020, 14, 136. doi: 10.3389/fnins.2020.00136 PMID: 32153358
- Esquisatto, M.A.M.; de Aro, A.A.; Fêo, H.B.; Gomes, L. Changes in the connective tissue sheath of Wistar rat nerve with aging. Ann. Anat., 2014, 196(6), 441-448. doi: 10.1016/j.aanat.2014.08.005 PMID: 25282682
- Clements, M.P.; Byrne, E.; Camarillo Guerrero, L.F.; Cattin, A.L.; Zakka, L.; Ashraf, A.; Burden, J.J.; Khadayate, S.; Lloyd, A.C.; Marguerat, S.; Parrinello, S. The wound microenvironment reprograms schwann cells to invasive mesenchymal-like cells to drive peripheral nerve regeneration. Neuron, 2017, 96(1), 98-114.e7. doi: 10.1016/j.neuron.2017.09.008 PMID: 28957681
- Luo, Y.; Pan, H.; Jiang, J.; Zhao, C.; Zhang, J.; Chen, P.; Lin, X.; Fan, S. Desktop-stereolithography 3D printing of a polyporous extracellular matrix bioink for bone defect regeneration. Front. Bioeng. Biotechnol., 2020, 8, 589094. doi: 10.3389/fbioe.2020.589094 PMID: 33240866
- Kornfeld, T.; Vogt, P.M.; Radtke, C. Nerve grafting for peripheral nerve injuries with extended defect sizes. Wien. Med. Wochenschr., 2019, 169(9-10), 240-251. doi: 10.1007/s10354-018-0675-6 PMID: 30547373
- Li, X.; Zhang, X.; Hao, M.; Wang, D.; Jiang, Z.; Sun, L.; Gao, Y.; Jin, Y.; Lei, P.; Zhuo, Y. The application of collagen in the repair of peripheral nerve defect. Front. Bioeng. Biotechnol., 2022, 10, 973301. doi: 10.3389/fbioe.2022.973301 PMID: 36213073
- Hopf, A.; Schaefer, D.J.; Kalbermatten, D.F.; Guzman, R.; Madduri, S. Schwann cell-like cells: Origin and usability for repair and regeneration of the peripheral and central nervous system. Cells, 2020, 9(9), 1990. doi: 10.3390/cells9091990 PMID: 32872454
- Widgerow, A.D.; Salibian, A.A.; Lalezari, S.; Evans, G.R.D. Neuromodulatory nerve regeneration: Adipose tissue-derived stem cells and neurotrophic mediation in peripheral nerve regeneration. J. Neurosci. Res., 2013, 91(12), 1517-1524. doi: 10.1002/jnr.23284 PMID: 24105674
- Gregory, H.; Phillips, J.B. Materials for peripheral nerve repair constructs: Natural proteins or synthetic polymers? Neurochem. Int., 2021, 143, 104953. doi: 10.1016/j.neuint.2020.104953 PMID: 33388359
- Fujimaki, H; Uchida, K; Inoue, G; Miyagi, M; Nemoto, N; Saku, T; Isobe, Y; Inage, K; Matsushita, O; Yagishita, S; Sato, J; Takano, S; Sakuma, Y; Ohtori, S; Takahashi, K; Takaso, M Oriented collagen tubes combined with basic fibroblast growth factor promote peripheral nerve regeneration in a 15mm sciatic nerve defect rat model. J. Biomed. Mater. Res. A, 2017, 105(1), 8-14. doi: 10.1002/jbm.a.35866
- Koopmans, G.; Hasse, B.; Sinis, N. Chapter 19: The role of collagen in peripheral nerve repair. Int. Rev. Neurobiol., 2009, 87, 363-379. doi: 10.1016/S0074-7742(09)87019-0 PMID: 19682648
- Tian, W.M.; Hou, S.P.; Ma, J.; Zhang, C.L.; Xu, Q.Y.; Lee, I.S.; Li, H.D.; Spector, M.; Cui, F.Z. Hyaluronic acid-poly-D-lysine-based three-dimensional hydrogel for traumatic brain injury. Tissue Eng., 2005, 11(3-4), 513-525. doi: 10.1089/ten.2005.11.513 PMID: 15869430
- Song, S.; Wang, X.; Wang, T.; Yu, Q.; Hou, Z.; Zhu, Z.; Li, R. Additive manufacturing of nerve guidance conduits for regeneration of injured peripheral nerves. Front. Bioeng. Biotechnol., 2020, 8, 590596. doi: 10.3389/fbioe.2020.590596 PMID: 33102468
- Peng, Y.; Li, K.Y.; Chen, Y.F.; Li, X.J.; Zhu, S.; Zhang, Z.Y.; Wang, X.; Duan, L.N.; Luo, Z.J.; Du, J.J.; Wang, J.C. Beagle sciatic nerve regeneration across a 30 mm defect bridged by chitosan/PGA artificial nerve grafts. Injury, 2018, 49(8), 1477-1484. doi: 10.1016/j.injury.2018.03.023 PMID: 29921534
- Cattin, A.L.; Burden, J.J.; Van Emmenis, L.; Mackenzie, F.E.; Hoving, J.J.A.; Garcia Calavia, N.; Guo, Y.; McLaughlin, M.; Rosenberg, L.H.; Quereda, V.; Jamecna, D.; Napoli, I.; Parrinello, S.; Enver, T.; Ruhrberg, C.; Lloyd, A.C. Macrophage-induced blood vessels guide schwann cell-mediated regeneration of peripheral nerves. Cell, 2015, 162(5), 1127-1139. doi: 10.1016/j.cell.2015.07.021 PMID: 26279190
- Malheiro, A.; Seijas-Gamardo, A.; Harichandan, A.; Mota, C.; Wieringa, P.; Moroni, L. Development of an in vitro biomimetic peripheral neurovascular platform. ACS Appl. Mater. Interfaces, 2022, 14(28), 31567-31585. doi: 10.1021/acsami.2c03861 PMID: 35815638
- He, B.; Pang, V.; Liu, X.; Xu, S.; Zhang, Y.; Djuanda, D.; Wu, G.; Xu, Y.; Zhu, Z. Interactions among nerve regeneration, angiogenesis, and the immune response immediately after sciatic nerve crush injury in sprague-dawley rats. Front. Cell. Neurosci., 2021, 15, 717209. doi: 10.3389/fncel.2021.717209 PMID: 34671243
- Gu, X.; Ding, F.; Williams, D.F. Neural tissue engineering options for peripheral nerve regeneration. Biomaterials, 2014, 35(24), 6143-6156. doi: 10.1016/j.biomaterials.2014.04.064 PMID: 24818883
- Wariyar, S.S.; Brown, A.D.; Tian, T.; Pottorf, T.S.; Ward, P.J. Angiogenesis is critical for the exercise-mediated enhancement of axon regeneration following peripheral nerve injury. Exp. Neurol., 2022, 353, 114029. doi: 10.1016/j.expneurol.2022.114029 PMID: 35259353
- Pola, R.; Aprahamian, T.R.; Bosch-Marcé, M.; Curry, C.; Gaetani, E.; Flex, A.; Smith, R.C.; Isner, J.M.; Losordo, D.W. Age-dependent VEGF expression and intraneural neovascularization during regeneration of peripheral nerves. Neurobiol. Aging, 2004, 25(10), 1361-1368. doi: 10.1016/j.neurobiolaging.2004.02.028 PMID: 15465634
- Wang, Y.; Li, Y.; Huang, Z.; Yang, B.; Mu, N.; Yang, Z.; Deng, M.; Liao, X.; Yin, G.; Nie, Y.; Chen, T.; Ma, H. Gene delivery of chitosan-graft-polyethyleneimine vectors loaded on scaffolds for nerve regeneration. Carbohydr. Polym., 2022, 290, 119499. doi: 10.1016/j.carbpol.2022.119499 PMID: 35550777
- Mehta, K.; Behl, T.; Kumar, A.; Uddin, M.S.; Zengin, G.; Arora, S. Deciphering the neuroprotective role of glucagon-like peptide-1 agonists in diabetic neuropathy: Current perspective and future directions. Curr. Protein Pept. Sci., 2021, 22(1), 4-18. doi: 10.2174/1389203721999201208195901 PMID: 33292149
- Sun, J.; Li, N.; Xu, M.; Li, L.; Chen, J.L.; Chen, Y.; Xu, J.G.; Wang, T.H. Mechanism of gene network in the treatment of intracerebral hemorrhage by natural plant drugs in Lutong granules. PLoS One, 2022, 17(11), e0274639. doi: 10.1371/journal.pone.0274639 PMID: 36441671
- Chikkannaiah, M.; Reyes, I. New diagnostic and therapeutic modalities in neuromuscular disorders in children. Curr. Probl. Pediatr. Adolesc. Health Care, 2021, 51(7), 101033. doi: 10.1016/j.cppeds.2021.101033 PMID: 34281812
- Stratton, J.A.; Eaton, S.; Rosin, N.L.; Jawad, S.; Holmes, A.; Yoon, G.; Midha, R.; Biernaskie, J. Macrophages and associated ligands in the aged injured nerve: A defective dynamic that contributes to reduced axonal regrowth. Front. Aging Neurosci., 2020, 12, 174. doi: 10.3389/fnagi.2020.00174 PMID: 32595489
- Scheib, J.L.; Höke, A. An attenuated immune response by Schwann cells and macrophages inhibits nerve regeneration in aged rats. Neurobiol. Aging, 2016, 45, 1-9. doi: 10.1016/j.neurobiolaging.2016.05.004 PMID: 27459920
Arquivos suplementares
