Chemical Probes Review: Choosing the Right Path Towards Pharmacological Targets in Drug Discovery, Challenges and Future Perspectives
- Authors: Ahuja A.1, Singh S.2, Murti Y.1
-
Affiliations:
- Institute of Pharmaceutical Research, GLA University
- Institute of Pharmaceutical Research,, GLA University
- Issue: Vol 27, No 17 (2024)
- Pages: 2544-2564
- Section: Chemistry
- URL: https://kazanmedjournal.ru/1386-2073/article/view/645271
- DOI: https://doi.org/10.2174/0113862073283304231118155730
- ID: 645271
Cite item
Full Text
Abstract
:Chemical probes are essential for academic research and target validation for disease identification. They facilitate drug discovery, target function investigation, and translation studies. A chemical probe provides starting material that can accelerate therapeutic values and safety measures for identifying any biological target in drug discovery. Essential read outs depend on their versatility in biochemical testing, proving the hypothesis, selectivity, specificity, affinity towards the target site, and valuable in new therapeutic approaches. Disease management will depend upon chemical probes as a primitive tool to ascertain the physicochemical stability for in vivo and in vitro studies useful for clinical trials and industrial application in the future. For cancer research, bacterial infection, and neurodegenerative disorders, chemical probes are integrated circuits which are on pipeline for the drug discovery process Furthermore, pharmacological modulators incorporate activators, crosslinkers, degraders, and inhibitors. Reports accessed depend on their structural, mechanical, biochemical, and pharmacological characterization in drug discovery research. The perspective for designing any chemical probes concludes with the utilization of drug discovery and identification of the potential target. It focuses mainly on evidence-based studies and produces promising results in successfully delivering novel therapeutics to treat cancers and other disorders at the target site. Moreover, natural product pharmacophores like rapamycin, cephalosporin, and β-lactamase are utilized for drug discovery. Chemical probes revolutionize computational-based study design depending on identifying novel targets within the database framework. Chemical probes are the clinical answers for drug development and goforward tools in solving other riddles for scientists and researchers working in this industries.
About the authors
Ashima Ahuja
Institute of Pharmaceutical Research, GLA University
Author for correspondence.
Email: info@benthamscience.net
Sonia Singh
Institute of Pharmaceutical Research,, GLA University
Email: info@benthamscience.net
Yogesh Murti
Institute of Pharmaceutical Research, GLA University
Email: info@benthamscience.net
References
- Stark, H. The chemical probe scopes, limitations and challenges. Expert Opin. Drug Discov., 2020, 15(12), 1365-1367. doi: 10.1080/17460441.2020.1781086 PMID: 32551991
- Litterman, N.K.; Lipinski, C.A.; Bunin, B.A.; Ekins, S. Computational prediction and validation of an experts evaluation of chemical probes. J. Chem. Inf. Model., 2014, 54(10), 2996-3004. doi: 10.1021/ci500445u PMID: 25244007
- Advancing Biomedical Research with Quality Chemical Probes. Advancing Biomedical Research with Quality Chemical Probes. Available from: https://www.promega.in/resources/pubhub/features/advancing-biomedical-research-with-quality-chemical-probes/
- Bunnage, M.E.; Chekler, E.L.P.; Jones, L.H. Target validation using chemical probes. Nat. Chem. Biol., 2013, 9(4), 195-199. doi: 10.1038/nchembio.1197 PMID: 23508172
- Wagner, BK CHAPTER 1: Introduction to chemical probes, in the discovery and utility of chemical probes in target discovery 2020, 1-13.
- Cohen, P. Guidelines for the effective use of chemical inhibitors of protein function to understand their roles in cell regulation. Biochem. J., 2010, 425(1), 53-54. doi: 10.1042/BJ20091428 PMID: 20001962
- Davies, S.P.; Reddy, H.; Caivano, M.; Cohen, P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J., 2000, 351(1), 95-105. doi: 10.1042/bj3510095 PMID: 10998351
- Edwards, A.M.; Bountra, C.; Kerr, D.J.; Willson, T.M. Open access chemical and clinical probes to support drug discovery. Nat. Chem. Biol., 2009, 5(7), 436-440. doi: 10.1038/nchembio0709-436 PMID: 19536100
- Boyce, S.; Hill, R.G. Proceedings of the 9th world congress on pain, 2000, pp. 313-324.
- Euler, V. U.S. in neurotransmitters in action; Bousfield, D., Ed.; Elsevier Biomedical Press: Amsterdam, 1985, pp. 143-150.
- Weigelt, J.; McBroom-Cerajewski, L.D.B.; Schapira, M.; Zhao, Y.; Arrowmsmith, C.H. Structural genomics and drug discovery: All in the family. Curr. Opin. Chem. Biol., 2008, 12(1), 32-39. doi: 10.1016/j.cbpa.2008.01.045 PMID: 18282486
- Workman, P.; Collins, I. Probing the probes: Fitness factors for small molecule tools. Chem. Biol., 2010, 17(6), 561-577. doi: 10.1016/j.chembiol.2010.05.013 PMID: 20609406
- Albert, A. Objective, quantitative, data-driven assessment of chemical probes. Cell Chem. Biol., 2018, 25, 194-205. doi: 10.1016/j.chembiol.2017.11.004 PMID: 29249694
- Dowling, J.E.; Chuaqui, C.; Pontz, T.W.; Lyne, P.D.; Larsen, N.A.; Block, M.H.; Chen, H.; Su, N.; Wu, A.; Russell, D.; Pollard, H.; Lee, J.W.; Peng, B.; Thakur, K.; Ye, Q.; Zhang, T.; Brassil, P.; Racicot, V.; Bao, L.; Denz, C.R.; Cooke, E. Potent and selective inhibitors of CK2 kinase identified through structure-guided hybridization. ACS Med. Chem. Lett., 2012, 3(4), 278-283. doi: 10.1021/ml200257n PMID: 24900464
- Zhou, Y.; Zhang, N.; Tang, S.; Qi, X.; Zhao, L.; Zhong, R.; Peng, Y. Exploring the pivotal role of the CK2 hinge region sub-pocket in binding with tricyclic quinolone analogues by computational analysis. Molecules, 2017, 22(5), 840. doi: 10.3390/molecules22050840 PMID: 28534839
- Knapp, S.; Arruda, P.; Blagg, J.; Burley, S.; David, H. Drewry; Edwards, Aled.; Fabbro, Doriano.; Gillespie, Paul.; Gray, Nathanael S.; Kuster, Bernhard.; Lackey, Karen E; Mazzafera, Paulo.; Tomkinson, Nicholas C O.; Willson, Timothy M.; Gray, Paul; J Zuercher, William. A public-private partnership to unlock the untargeted kinome. Nat. Chem. Biol., 2013, 9, 1-7.
- Patricelli, M.P.; Nomanbhoy, T.K.; Wu, J.; Brown, H.; Zhou, D.; Zhang, J.; Jagannathan, S.; Aban, A.; Okerberg, E.; Herring, C.; Nordin, B.; Weissig, H.; Yang, Q.; Lee, J.D.; Gray, N.S.; Kozarich, J.W. In situ kinase profiling reveals functionally relevant properties of native kinases. Chem. Biol., 2011, 18(6), 699-710. doi: 10.1016/j.chembiol.2011.04.011 PMID: 21700206
- Deepa, P.; Thirumeignanam, D. Understanding the impact of anticancer halogenated inhibitors and various functional groups (X = Cl, F, CF3, CH3, NH2, OH, H) of casein kinase 2 (CK2). J. Biomol. Struct. Dyn., 2022, 40(11), 5036-5052. doi: 10.1080/07391102.2020.1866075 PMID: 33375908
- Atkinson, E.L.; Iegre, J.; Brear, P.D.; Zhabina, E.A.; Hyvönen, M.; Spring, D.R. Downfalls of chemical probes acting at the kinase ATP-Site: CK2 as a case study. Molecules, 2021, 26(7), 1977. doi: 10.3390/molecules26071977 PMID: 33807474
- Pardhi, T.; Vasu, K. Identification of dual kinase inhibitors of CK2 and GSK3β: Combined qualitative and quantitative pharmacophore modeling approach. J. Biomol. Struct. Dyn., 2018, 36(1), 177-194. doi: 10.1080/07391102.2016.1270856 PMID: 27960601
- Stone, Samantha; J, David.;, Newman; Colletti, Steven L.; S. Tan, Derek Cheminformatic analysis of natural product-based drugs and chemical probes. Natural products as chemical probes. Nat. Prod. Rep., 2022, 39, 20-32.
- Carlson, E.E. Natural products as chemical probes. ACS Chem. Biol., 2010, 5(7), 639-653. doi: 10.1021/cb100105c PMID: 20509672
- Sehgal, S.N.; Baker, H.; Vézina, C. Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J. Antibiot. (Tokyo), 1975, 28(10), 727-732. doi: 10.7164/antibiotics.28.727 PMID: 1102509
- Abraham, R.T. Mammalian target of rapamycin: Immunosuppressive drugs uncover a novel pathway of cytokine receptor signaling. Curr. Opin. Immunol., 1998, 10(3), 330-336. doi: 10.1016/S0952-7915(98)80172-6 PMID: 9638370
- Fingar, D.C.; Blenis, J. Target of rapamycin (TOR): An integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene, 2004, 23(18), 3151-3171. doi: 10.1038/sj.onc.1207542 PMID: 15094765
- Heitman, J.; Movva, N.R.; Hall, M.N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science, 1991, 253(5022), 905-909. doi: 10.1126/science.1715094 PMID: 1715094
- Crespo, J.L.; Hall, M.N. Elucidating TOR signaling and rapamycin action: Lessons from Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev., 2002, 66(4), 579-591. doi: 10.1128/MMBR.66.4.579-591.2002 PMID: 12456783
- Vézina, C.; Kudelski, A.; Sehgal, S.N. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J. Antibiot. (Tokyo), 1975, 28(10), 721-726. doi: 10.7164/antibiotics.28.721 PMID: 1102508
- Harding, M.W.; Galat, A.; Uehling, D.E.; Schreiber, S.L. A receptor for the immuno-suppressant FK506 is a cistrans peptidyl-prolyl isomerase. Nature, 1989, 341(6244), 758-760. doi: 10.1038/341758a0 PMID: 2477715
- Bierer, B.E.; Mattila, P.S.; Standaert, R.F.; Herzenberg, L.A.; Burakoff, S.J.; Crabtree, G.; Schreiber, S.L. Two distinct signal transmission pathways in T lymphocytes are inhibited by complexes formed between an immunophilin and either FK506 or rapamycin. Proc. Natl. Acad. Sci. USA, 1990, 87(23), 9231-9235. doi: 10.1073/pnas.87.23.9231 PMID: 2123553
- Dancey, J. mTOR signaling and drug development in cancer. Nat. Rev. Clin. Oncol., 2010, 7(4), 209-219. doi: 10.1038/nrclinonc.2010.21 PMID: 20234352
- Roberts, B.E.; Duennwald, M.L.; Wang, H.; Chung, C.; Lopreiato, N.P.; Sweeny, E.A.; Knight, M.N.; Shorter, J. A synergistic small-molecule combination directly eradicates diverse prion strain structures. Nat. Chem. Biol., 2009, 5(12), 936-946. doi: 10.1038/nchembio.246 PMID: 19915541
- Patury, S.; Miyata, Y.; Gestwicki, J. Pharmacological targeting of the Hsp70 chaperone. Curr. Top. Med. Chem., 2009, 9(15), 1337-1351. doi: 10.2174/156802609789895674 PMID: 19860737
- Evans, CG; Chang, L; Gestwicki, JE Heat shock protein 70 (Hsp70) as an emerging drug target. J Med Chem, 2010. Epub Mar 24
- Butt, M.S.; Sultan, M.T. Green tea: Natures defense against malignancies. Crit. Rev. Food Sci. Nutr., 2009, 49(5), 463-473. doi: 10.1080/10408390802145310 PMID: 19399671
- Jinwal, U.K.; Miyata, Y.; Koren, J., III; Jones, J.R.; Trotter, J.H.; Chang, L.; OLeary, J.; Morgan, D.; Lee, D.C.; Shults, C.L.; Rousaki, A.; Weeber, E.J.; Zuiderweg, E.R.P.; Gestwicki, J.E.; Dickey, C.A. Chemical manipulation of hsp70 ATPase activity regulates tau stability. J. Neurosci., 2009, 29(39), 12079-12088. doi: 10.1523/JNEUROSCI.3345-09.2009 PMID: 19793966
- Oddo, S.; Caccamo, A.; Shepherd, J.D.; Murphy, M.P.; Golde, T.E.; Kayed, R.; Metherate, R.; Mattson, M.P.; Akbari, Y.; LaFerla, F.M. Triple-transgenic model of Alzheimers disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron, 2003, 39(3), 409-421. doi: 10.1016/S0896-6273(03)00434-3 PMID: 12895417
- Castellanos-Ortega, M.R.; Cruz-Aguado, R.; Martínez-Martí, L. Nerve growth factor: Possibilities and limitations of its clinical application. Rev. Neurol., 1999, 29(5), 439-447. PMID: 10584248
- Skovronsky, D.M.; Lee, V.M.Y.; Trojanowski, J.Q. Neurodegenerative diseases: New concepts of pathogenesis and their therapeutic implications. Annu. Rev. Pathol., 2006, 1(1), 151-170. doi: 10.1146/annurev.pathol.1.110304.100113 PMID: 18039111
- Shigemori, H.; Wakuri, S.; Yazawa, K.; Nakamura, T.; Sasaki, T.; Kobayashi, J. Fellutamides A and B, cytotoxic peptides from a marine fish-possessing fungus Penicillium fellutanum. Tetrahedron, 1991, 47(40), 8529-8534. doi: 10.1016/S0040-4020(01)82396-6
- Hines, J.; Groll, M.; Fahnestock, M.; Crews, C.M. Proteasome inhibition by fellutamide B induces nerve growth factor synthesis. Chem. Biol., 2008, 15(5), 501-512. doi: 10.1016/j.chembiol.2008.03.020 PMID: 18482702
- Yamaguchi, K.; Tsuji, T.; Wakuri, S.; Yazawa, K.; Kondo, K.; Shigemori, H.; Kobayashi, J. Stimulation of nerve growth factor synthesis and secretion by fellutamide A in vitro. Biosci. Biotechnol. Biochem., 1993, 57(2), 195-199. doi: 10.1271/bbb.57.195 PMID: 7763492
- Brody, L.C.; Mitchell, G.A.; Obie, C.; Michaud, J.; Steel, G.; Fontaine, G.; Robert, M.F.; Sipila, I.; Kaiser-Kupfer, M.; Valle, D. Ornithine delta-aminotransferase mutations in gyrate atrophy. Allelic heterogeneity and functional consequences. J. Biol. Chem., 1992, 267(5), 3302-3307. doi: 10.1016/S0021-9258(19)50731-1 PMID: 1737786
- Wood, K.; Cornwell, W.D.; Jackson, J.R. Past and future of the mitotic spindle as an oncology target. Curr. Opin. Pharmacol., 2001, 1(4), 370-377. doi: 10.1016/S1471-4892(01)00064-9 PMID: 11710735
- Cruz-Monserrate, Z.; Vervoort, H.C.; Bai, R.; Newman, D.J.; Howell, S.B.; Los, G.; Mullaney, J.T.; Williams, M.D.; Pettit, G.R.; Fenical, W.; Hamel, E. Diazonamide A and a synthetic structural analog: Disruptive effects on mitosis and cellular microtubules and analysis of their interactions with tubulin. Mol. Pharmacol., 2003, 63(6), 1273-1280. doi: 10.1124/mol.63.6.1273 PMID: 12761336
- Williams, N.S.; Burgett, A.W.G.; Atkins, A.S.; Wang, X.; Harran, P.G.; McKnight, S.L. Therapeutic anticancer efficacy of a synthetic diazonamide analog in the absence of overt toxicity. Proc. Natl. Acad. Sci. USA, 2007, 104(7), 2074-2079. doi: 10.1073/pnas.0611340104 PMID: 17287337
- Wang, G.; Shang, L.; Burgett, A.W.G.; Harran, P.G.; Wang, X. Diazonamide toxins reveal an unexpected function for ornithine δ-amino transferase in mitotic cell division. Proc. Natl. Acad. Sci. USA, 2007, 104(7), 2068-2073. doi: 10.1073/pnas.0610832104 PMID: 17287350
- Wang, T.; Lawler, A.M.; Steel, G.; Sipila, I.; Milam, A.H.; Valle, D. Mice lacking ornithineδaminotransferase have paradoxical neonatal hypoornithinaemia and retinal degeneration. Nat. Genet., 1995, 11(2), 185-190. doi: 10.1038/ng1095-185 PMID: 7550347
- Lindquist, N.; Fenical, W.; Van Duyne, G.D.; Clardy, J. Isolation and structure determination of diazonamides A and B, unusual cytotoxic metabolites from the marine ascidian Diazona chinensis. J. Am. Chem. Soc., 1991, 113(6), 2303-2304. doi: 10.1021/ja00006a060
- Seiler, N. Ornithine aminotransferase, a potential target for the treatment of hyperammonemias. Curr. Drug Targets, 2000, 1(2), 119-154. doi: 10.2174/1389450003349254 PMID: 11465067
- Frye, S.V. The art of the chemical probe. Nat. Chem. Biol., 2010, 6(3), 159-161. doi: 10.1038/nchembio.296 PMID: 20154659
- Kolbe, K.; Veleti, S.K.; Johnson, E.E.; Cho, Y.W.; Oh, S.; Barry, C.E. III; Cho, Young-Woo; S, Oh; CE, Barry Role of chemical biology in tuberculosis drug discovery and diagnosis. ACS Infect. Dis., 2018, 4(4), 458-466. doi: 10.1021/acsinfecdis.7b00242 PMID: 29364647
- Lee, J.; Schapira, M. The promise and peril of chemical probe negative controls. ACS Chem. Biol., 2021, 16(4), 579-585. doi: 10.1021/acschembio.1c00036 PMID: 33745272
- Castaldi, M.P.; Hendricks, J.A.; Zhang, A.X. Design, synthesis, and strategic use of small chemical probes toward identification of novel targets for drug development. Curr. Opin. Chem. Biol., 2020, 56, 91-97. doi: 10.1016/j.cbpa.2020.03.003 PMID: 32375076
- Zhu, H.; Hamachi, I. Fluorescence imaging of drug target proteins using chemical probes. J. Pharm. Anal., 2020, 10(5), 426-433. doi: 10.1016/j.jpha.2020.05.013 PMID: 33133726
- Ortega, C.; Anderson, L.N.; Frando, A.; Sadler, N.C.; Brown, R.W.; Smith, R.D.; Wright, A.T.; Grundner, C. Systematic survey of serine hydrolase activity in mycobacterium tuberculosis defines changes associated with persistence. Cell Chem. Biol., 2016, 23(2), 290-298. doi: 10.1016/j.chembiol.2016.01.003 PMID: 26853625
- Tallman, K.R.; Levine, S.R.; Beatty, K.E. Profiling esterases in mycobacterium tuberculosis using far-red fluorogenic substrates. ACS Chem. Biol., 2016, 11(7), 1810-1815. doi: 10.1021/acschembio.6b00233 PMID: 27177211
- Tallman, K.R.; Levine, S.R.; Beatty, K.E. Small-molecule probes reveal esterases with persistent activity in dormant and reactivating mycobacterium tuberculosis. ACS Infect. Dis., 2016, 2(12), 936-944. doi: 10.1021/acsinfecdis.6b00135 PMID: 27690385
- Lentz, C.S.; Ordonez, A.A.; Kasperkiewicz, P.; La Greca, F.; ODonoghue, A.J.; Schulze, C.J.; Powers, J.C.; Craik, C.S.; Drag, M.; Jain, S.K.; Bogyo, M. Design of selective substrates and activity-based probes for hydrolase important for pathogenesis 1 (HIP1) from Mycobacterium tuberculosis. ACS Infect. Dis., 2016, 2(11), 807-815. doi: 10.1021/acsinfecdis.6b00092 PMID: 27739665
- Ansong, C.; Ortega, C.; Payne, S.H.; Haft, D.H.; Chauvignè-Hines, L.M.; Lewis, M.P.; Ollodart, A.R.; Purvine, S.O.; Shukla, A.K.; Fortuin, S.; Smith, R.D.; Adkins, J.N.; Grundner, C.; Wright, A.T. Identification of widespread adenosine nucleotide binding in Mycobacterium tuberculosis. Chem. Biol., 2013, 20(1), 123-133. doi: 10.1016/j.chembiol.2012.11.008 PMID: 23352146
- Wolfe, L.M.; Veeraraghavan, U.; Idicula-Thomas, S.; Schürer, S.; Wennerberg, K.; Reynolds, R.; Besra, G.S.; Dobos, K.M. A chemical proteomics approach to profiling the ATP-binding proteome of Mycobacterium tuberculosis. Mol. Cell. Proteomics, 2013, 12(6), 1644-1660. doi: 10.1074/mcp.M112.025635 PMID: 23462205
- Benjamin, P. Duckworth; Wilson, Daniel J.; M. Nelson, Kathryn; Boshoff, Helena I.; Barry, Clifton E., III; Aldrich, Courtney C. Development of a selective activity-based probe for adenylating enzymes: Profiling mbta involved in siderophore biosynthesis from mycobacterium tuberculosis. ACS Chem. Biol., 2012, 7(10), 1653-1658. doi: 10.1021/cb300112x PMID: 22796950
- Carlson, E.E.; May, J.F.; Kiessling, L.L. Chemical probes of UDP-galactopyranose mutase. Chem. Biol., 2006, 13(8), 825-837. doi: 10.1016/j.chembiol.2006.06.007 PMID: 16931332
- Kastrinsky, D.B.; Barry, C.E., III Synthesis of labeled meropenem for the analysis of M. tuberculosis transpeptidases. Tetrahedron Lett., 2010, 51(1), 197-200. doi: 10.1016/j.tetlet.2009.10.124 PMID: 20161438
- Kong, Y.; Yao, H.; Ren, H.; Subbian, S.; Cirillo, S.L.G.; Sacchettini, J.C.; Rao, J.; Cirillo, J.D. Imaging tuberculosis with endogenous β-lactamase reporter enzyme fluorescence in live mice. Proc. Natl. Acad. Sci. USA, 2010, 107(27), 12239-12244. doi: 10.1073/pnas.1000643107 PMID: 20566877
- Xie, H.; Mire, J.; Kong, Y.; Chang, M.; Hassounah, H.A.; Thornton, C.N.; Sacchettini, J.C.; Cirillo, J.D.; Rao, J. Rapid point-of-care detection of the tuberculosis pathogen using a BlaC-specific fluorogenic probe. Nat. Chem., 2012, 4(10), 802-809. doi: 10.1038/nchem.1435 PMID: 23000993
- Cheng, Y.; Xie, H.; Sule, P.; Hassounah, H.; Graviss, E.A.; Kong, Y.; Cirillo, J.D.; Rao, J. Fluorogenic probes with substitutions at the 2 and 7 positions of cephalosporin are highly BlaC-specific for rapid Mycobacterium tuberculosis detection. Angew. Chem. Int. Ed., 2014, 53(35), 9360-9364. doi: 10.1002/anie.201405243 PMID: 24989449
- Carlson, E.E.; Cravatt, B.F. Chemoselective probes for metabolite enrichment and profiling. Nat. Methods, 2007, 4(5), 429-435. doi: 10.1038/nmeth1038 PMID: 17417646
- Blum, G.; von Degenfeld, G.; Merchant, M.J.; Blau, H.M.; Bogyo, M. Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes. Nat. Chem. Biol., 2007, 3(10), 668-677. doi: 10.1038/nchembio.2007.26 PMID: 17828252
- Blum, G.; Mullins, S.R.; Keren, K.; Fonovič, M.; Jedeszko, C.; Rice, M.J.; Sloane, B.F.; Bogyo, M. Dynamic imaging of protease activity with fluorescently quenched activity-based probes. Nat. Chem. Biol., 2005, 1(4), 203-209. doi: 10.1038/nchembio728 PMID: 16408036
- Alexandra, J. Lukasiewicza; Contrerasa, Lydia M. Antisense probing of dynamic RNA structures. Methods, 2020, 1-8.
- Russell, R.; Herschlag, D. Probing the folding landscape of the Tetrahymena ribozyme: Commitment to form the native conformation is late in the folding pathway. J. Mol. Biol., 2001, 308(5), 839-851. doi: 10.1006/jmbi.2001.4751 PMID: 11352576
- Hefti, A.F. Periodontal probing. Crit. Rev. Oral Biol. Med., 1997, 8(3), 336-356. doi: 10.1177/10454411970080030601 PMID: 9260047
- Ding, Y.; Li, Z.; Xu, C.; Qin, W.; Wu, Q.; Wang, X.; Cheng, X.; Li, L.; Huang, W. Fluorogenic probes/inhibitors of β‐lactamase and their applications in drug‐resistant bacteria. Angew. Chem. Int. Ed., 2021, 60(1), 24-40. doi: 10.1002/anie.202006635 PMID: 32592283
- New noninvasive chemical probe detects common species of staph bacteria in the body. Available from: https://www.news-medical.net/news/20140203/New-noninvasive-chemical-probe-detects-common-species-of-staph-bacteria-in-the-body.aspx
- Yoon, S.A.; Park, S.Y.; Cha, Y.; Gopala, L.; Lee, M.H. Strategies of detecting bacteria using fluorescence-based dyes. Front Chem., 2021, 9, 743923. doi: 10.3389/fchem.2021.743923
- Available from: https://www.pnnl.gov/science/highlights/highlight.asp?id=1266
- Zhang, C.; Stockwell, S.R.; Elbanna, M.; Ketteler, R.; Freeman, J.; Al-Lazikani, B.; Eccles, S.; De Haven Brandon, A.; Raynaud, F.; Hayes, A.; Clarke, P.A.; Workman, P.; Mittnacht, S. Signalling involving MET and FAK supports cell division independent of the activity of the cell cycle-regulating CDK4/6 kinases. Oncogene, 2019, 38(30), 5905-5920. doi: 10.1038/s41388-019-0850-2 PMID: 31296956
- Antolin, A.A.; Workman, P.; Al-Lazikani, B. Public resources for chemical probes: the journey so far and the road ahead. Future Med. Chem., 2021, 13(8), 731-747.
- Paiva, S.L.; Crews, C.M. Targeted protein degradation: Elements of PROTAC design. Curr. Opin. Chem. Biol., 2019, 50, 111-119. doi: 10.1016/j.cbpa.2019.02.022 PMID: 31004963
- Workman, P.; Antolin, A.A.; Al-Lazikani, B. Transforming cancer drug discovery with Big Data and AI. Expert Opin. Drug Discov., 2019, 14(11), 1089-1095. doi: 10.1080/17460441.2019.1637414 PMID: 31284790
- Mullard, A. A probe for every protein. Nat. Rev. Drug Discov., 2019, 18(10), 733-736. doi: 10.1038/d41573-019-00159-9 PMID: 31570852
- Jones, L.H. Cell permeable affinity- and activity-based probes. Future Med. Chem., 2015, 7(16), 2131-2141. doi: 10.4155/fmc.15.100 PMID: 26511518
- Available from: https://patents.google.com/patent/WO2010114599A1
- Available from: https://patents.google.com/patent/US8962853B2/en
- Available from: https://patents.google.com/patent/US8697357
- Available from: https://pubchem.ncbi.nlm.nih.gov/patent/US-10704087-B2
- Available from: https://patents.google.com/patent/US7375198
- Lai, H.M.; Ng, W.L.; Gentleman, S.M.; Wu, W. Chemical probes for visualizing intact animal and human brain tissue. Cell Chem. Biol., 2017, 24(6), 659-672. doi: 10.1016/j.chembiol.2017.05.015 PMID: 28644957
- Chang, W.M.; Dakanali, M.; Capule, C.C.; Sigurdson, C.J.; Yang, J.; Theodorakis, E.A. ANCA: A family of fluorescent probes that bind and stain amyloid plaques in human tissue. ACS Chem. Neurosci., 2011, 2(5), 249-255. doi: 10.1021/cn200018v PMID: 21743829
- McMurray, L.; Macdonald, J.A.; Ramakrishnan, N.K.; Zhao, Y.; Williamson, D.W.; Tietz, O.; Zhou, X.; Kealey, S.; Fagan, S.G.; Smolek, T.; Cubinkova, V.; ilka, N.; Spillantini, M.G.; Tolkovsky, A.M.; Goedert, M.; Aigbirhio, F.I. Synthesis and assessment of novel probes for imaging tau pathology in transgenic mouse and rat models. ACS Chem. Neurosci., 2021, 12(11), 1885-1893. doi: 10.1021/acschemneuro.0c00790 PMID: 33689290
- Watanabe, H. Development of SPECT probes for in vivo imaging of β-amyloid and tau aggregates in the alzheimers disease brain. Pharmacy Magazine, 2017, 137(11), 1361-1365. doi: 10.1248/yakushi.17-00156 PMID: 29093372
- Ono, M.; Watanabe, H.; Kitada, A.; Matsumura, K.; Ihara, M.; Saji, H. Highly selective Tau-SPECT imaging probes for detection of neurofibrillary tangles in alzheimers disease. Sci. Rep., 2016, 6(1), 34197. doi: 10.1038/srep34197 PMID: 27687137
- Cui, M. Past and recent progress of molecular imaging probes for β-amyloid plaques in the brain. Curr. Med. Chem., 2013, 21(1), 82-112. doi: 10.2174/09298673113209990216 PMID: 23992340
- Brelstaff, J.; Ossola, B.; Neher, J.J.; Klingstedt, T.; Nilsson, K.P.R.; Goedert, M.; Spillantini, M.G.; Tolkovsky, A.M. The fluorescent pentameric oligothiophene pFTAA identifies filamentous tau in live neurons cultured from adult P301S tau mice. Front. Neurosci., 2015, 9, 184. doi: 10.3389/fnins.2015.00184 PMID: 26074756
- Blau, R.; Shelef, O.; Shabat, D.; Satchi-Fainaro, R. Chemiluminescent probes in cancer biology. Nat. Rev. Bioeng., 2023, 1(9), 648-664. doi: 10.1038/s44222-023-00074-0
- Benezra, M.; Penate-Medina, O.; Zanzonico, P.B.; Schaer, D.; Ow, H.; Burns, A.; DeStanchina, E.; Longo, V.; Herz, E.; Iyer, S.; Wolchok, J.; Larson, S.M.; Wiesner, U.; Bradbury, M.S. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J. Clin. Invest., 2011, 121(7), 2768-2780. doi: 10.1172/JCI45600 PMID: 21670497
- van Dam, G.M.; Themelis, G.; Crane, L.M.A.; Harlaar, N.J.; Pleijhuis, R.G.; Kelder, W.; Sarantopoulos, A.; de Jong, J.S.; Arts, H.J.G.; van der Zee, A.G.J.; Bart, J.; Low, P.S.; Ntziachristos, V. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nat. Med., 2011, 17(10), 1315-1319. doi: 10.1038/nm.2472 PMID: 21926976
- Lamberts, L.E.; Koch, M.; de Jong, J.S.; Adams, A.L.L.; Glatz, J.; Kranendonk, M.E.G.; Terwisscha van Scheltinga, A.G.T.; Jansen, L.; de Vries, J.; Lub-de Hooge, M.N.; Schröder, C.P.; Jorritsma-Smit, A.; Linssen, M.D.; de Boer, E.; van der Vegt, B.; Nagengast, W.B.; Elias, S.G.; Oliveira, S.; Witkamp, A.J.; Mali, W.P.T.M.; Van der Wall, E.; van Diest, P.J.; de Vries, E.G.E.; Ntziachristos, V.; van Dam, G.M. Tumor-specific uptake of fluorescent bevacizumab-IRDye800CW microdosing in patients with primary breast cancer: A phase I feasibility study. Clin. Cancer Res., 2017, 23(11), 2730-2741. doi: 10.1158/1078-0432.CCR-16-0437 PMID: 28119364
- Seah, D.; Cheng, Z.; Vendrell, M. Fluorescent probes for imaging in humans: Where are we now? ACS Nano, 2023, 17(20), 19478-19490. doi: 10.1021/acsnano.3c03564 PMID: 37787658
Supplementary files
