Proposition of In silico Pharmacophore Models for Malaria: A Review


Цитировать

Полный текст

Аннотация

:In the field of medicinal chemistry, the concept of pharmacophore refers to the specific region of a molecule that possesses essential structural and chemical characteristics for binding to a receptor and eliciting biological activity. Understanding the pharmacophore is crucial for drug research and development, as it allows the design of new drugs. Malaria, a widespread disease, is commonly treated with chloroquine and artemisinin, but the emergence of parasite resistance limits their effectiveness. This study aims to explore computer simulations to discover a specific pharmacophore for Malaria, providing new alternatives for its treatment. A literature review was conducted, encompassing articles proposing a pharmacophore for Malaria, gathered from the \"Web of Science\" database, with a focus on recent publications to ensure up-to-date analysis. The selected articles employed diverse methods, including ligand-based and structurebased approaches, integrating molecular structure and biological activity data to yield comprehensive analyses. Affinity evaluation between the proposed pharmacophore and the target receptor involved calculating free energy to quantify their interaction. Multiple linear regression was commonly utilized, though it is sensitive to multicollinearity issues. Another recurrent methodology was the use of the Schrödinger package, employing tools such as the Phase module and the OPLS force field for interaction analysis. Pharmacophore model proposition allows threedimensional representations guiding the synthesis and design of new biologically active compounds, offering a promising avenue for discovering therapeutic agents to combat Malaria.

Об авторах

Natália de Sousa

Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba

Email: info@benthamscience.net

Igor de Araújo

Postgraduate Programa in Natural and Synthetic Bioactive Compounds, Federal University of Paraiba,, Federal University of Paraíba

Email: info@benthamscience.net

Teresa Rodrigues

Postgraduate Programa in Natural and Synthetic Bioactive Compounds, Federal University of Paraiba,, Federal University of Paraíba

Email: info@benthamscience.net

Pablo da Silva

Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba

Email: info@benthamscience.net

Jéssica de Moura

Postgraduate Programa in Natural and Synthetic Bioactive Compounds, Federal University of Paraiba,, Federal University of Paraíba

Email: info@benthamscience.net

Marcus Scotti

Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba

Email: info@benthamscience.net

Luciana Scotti

Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Schmidt, M.; Hrabcova, V.; Jun, D.; Kuca, K.; Musilek, K. Vector Control and Insecticidal Resistance in the African Malaria Mosquito Anopheles gambiae. Chem. Res. Toxicol., 2018, 31(7), 534-547. doi: 10.1021/acs.chemrestox.7b00285 PMID: 29847927
  2. Hoelz, L.V.B.; Calil, F.A.; Nonato, M.C.; Pinheiro, L.C.S.; Boechat, N. Plasmodium falciparum dihydroorotate dehydrogenase: A drug target against malaria. Future Med. Chem., 2018, 10(15), 1853-1874. doi: 10.4155/fmc-2017-0250 PMID: 30019917
  3. Hassan, A.O.; Oso, O.V.; Obeagu, E.I.; Adeyemo, A.T. Malaria Vaccine: Prospects and Challenges. Madonna Univ. J. Med. Heal. Sci., 2022, 2(2), 22-40.
  4. Ayanlade, A.; Sergi, C.M.; Sakdapolrak, P.; Ayanlade, O.S.; Di Carlo, P.; Babatimehin, O.I.; Weldemariam, L.F.; Jegede, M.O. Climate change engenders a better Early Warning System development across Sub-Saharan Africa: The malaria case. Resour. Environ. Sustain., 2022, 10, 100080. doi: 10.1016/j.resenv.2022.100080
  5. Organização Mundial da Saúde. Diretrizes Da OMS Para Malária 2021. Available From: https://www.paho.org/pt/topicos/malaria
  6. World Health Organization - WHO. Malaria. 2023. Available From: https://www.who.int/news-room/fact-sheets/detail/malaria
  7. Khine, M.M.; Langkulsen, U. The Implications of Climate Change on Health among Vulnerable Populations in South Africa: A Systematic Review. Int. J. Environ. Res. Public Health, 2023, 20(4), 3425. doi: 10.3390/ijerph20043425 PMID: 36834118
  8. Pasini, E.M.; Zeeman, A.M.; Voorberg-Van Der Wel, A.; Kocken, C.H.M. Plasmodium knowlesi: A relevant, versatile experimental malaria model. Parasitology, 2018, 145(1), 56-70. doi: 10.1017/S0031182016002286 PMID: 27938428
  9. Frischknecht, F. Life Cycle of Malaria-Causing Parasites.Malaria: Deadly parasites, exciting research and no vaccination; Springer: New York, 2023, pp. 9-18. doi: 10.1007/978-3-658-38407-4_3
  10. Dini, S.; Douglas, N.M.; Poespoprodjo, J.R.; Kenangalem, E.; Sugiarto, P.; Plumb, I.D.; Price, R.N.; Simpson, J.A. The risk of morbidity and mortality following recurrent malaria in Papua, Indonesia: A retrospective cohort study. BMC Med., 2020, 18(1), 28. doi: 10.1186/s12916-020-1497-0 PMID: 32075649
  11. Dembele, L.; Diakite, O.; Sogore, F.; Kedir, S.; Tandina, F.; Maiga, M.; Abate, A.; Golassa, L.; Djimde, A.A. Ethiopian Plasmodium vivax hypnozoites formation dynamics and their susceptibility to reference antimalarial drugs. BMC Infect. Dis., 2023, 23(1), 405. doi: 10.1186/s12879-023-08381-y PMID: 37312065
  12. Ashley, E.A.; Poespoprodjo, J.R. Treatment and prevention of malaria in children. Lancet Child Adolesc. Health, 2020, 4(10), 775-789. doi: 10.1016/S2352-4642(20)30127-9 PMID: 32946831
  13. Imwong, M.; Dhorda, M.; Myo Tun, K.; Thu, A.M.; Phyo, A.P.; Proux, S.; Suwannasin, K.; Kunasol, C.; Srisutham, S.; Duanguppama, J.; Vongpromek, R.; Promnarate, C.; Saejeng, A.; Khantikul, N.; Sugaram, R.; Thanapongpichat, S.; Sawangjaroen, N.; Sutawong, K.; Han, K.T.; Htut, Y.; Linn, K.; Win, A.A.; Hlaing, T.M.; van der Pluijm, R.W.; Mayxay, M.; Pongvongsa, T.; Phommasone, K.; Tripura, R.; Peto, T.J.; von Seidlein, L.; Nguon, C.; Lek, D.; Chan, X.H.S.; Rekol, H.; Leang, R.; Huch, C.; Kwiatkowski, D.P.; Miotto, O.; Ashley, E.A.; Kyaw, M.P.; Pukrittayakamee, S.; Day, N.P.J.; Dondorp, A.M.; Smithuis, F.M.; Nosten, F.H.; White, N.J. Molecular epidemiology of resistance to antimalarial drugs in the Greater Mekong subregion: An observational study. Lancet Infect. Dis., 2020, 20(12), 1470-1480. doi: 10.1016/S1473-3099(20)30228-0 PMID: 32679084
  14. Uwimana, A.; Legrand, E.; Stokes, B.H.; Ndikumana, J.L.M.; Warsame, M.; Umulisa, N.; Ngamije, D.; Munyaneza, T.; Mazarati, J.B.; Munguti, K.; Campagne, P.; Criscuolo, A.; Ariey, F.; Murindahabi, M.; Ringwald, P.; Fidock, D.A.; Mbituyumuremyi, A.; Menard, D. Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda. Nat. Med., 2020, 26(10), 1602-1608. doi: 10.1038/s41591-020-1005-2 PMID: 32747827
  15. Der Merwe, V.; Dawid, J. Synthesis and Antiplasmodial Structure-Activity Relationships for Some Novel 4-Aminoquinolines and 5-Chlorobenzimidazoles; University of Cape Town, 2004.
  16. Khanal, P. Antimalarial and anticancer properties of artesunate and other artemisinins: Current development. Monatsh. Chem., 2021, 152(4), 387-400. doi: 10.1007/s00706-021-02759-x PMID: 33814617
  17. Das, A.K. Anticancer effect of antimalarial artemisinin compounds. Ann. Med. Health Sci. Res., 2015, 5(2), 93-102. doi: 10.4103/2141-9248.153609 PMID: 25861527
  18. Sadybekov, A.V.; Katritch, V. Computational approaches streamlining drug discovery. Nature, 2023, 616(7958), 673-685. doi: 10.1038/s41586-023-05905-z PMID: 37100941
  19. Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717. doi: 10.1038/srep42717 PMID: 28256516
  20. Opo, F.A.; Rahman, M.M.; Ahammad, F.; Ahmed, I.; Bhuiyan, M.A.; Asiri, A.M. Structure Based Pharmacophore Modeling, Virtual Screening, Molecular Docking and ADMET Approaches for Identification of Natural Anti-Cancer Agents Targeting XIAP Protein. Sci. Rep., 2021, 11(1), 1-17. PMID: 33414495
  21. Gomes, M.; Muratov, E.; Pereira, M.; Peixoto, J.; Rosseto, L.; Cravo, P.; Andrade, C.; Neves, B. Chalcone derivatives: promising starting points for drug design. Molecules, 2017, 22(8), 1210. doi: 10.3390/molecules22081210 PMID: 28757583
  22. Oduselu, G.O.; Afolabi, R.; Ademuwagun, I.; Vaughan, A.; Adebiyi, E. Structure-based pharmacophore modeling, virtual screening, and molecular dynamics simulation studies for identification of Plasmodium falciparum 5-aminolevulinate synthase inhibitors. Front. Med. (Lausanne), 2023, 9, 1022429. doi: 10.3389/fmed.2022.1022429 PMID: 36714108
  23. Dutta, S.; Sutradhar, S.; Sachan, K. Computer-Aided Drug Designa New Approach in Drug Design and Discovery. Computer (Long. Beach. Calif), 2010, 4(3), 146-151.
  24. Wang, Z.; Sun, H.; Shen, C.; Hu, X.; Gao, J.; Li, D.; Cao, D.; Hou, T. Combined strategies in structure-based virtual screening. Phys. Chem. Chem. Phys., 2020, 22(6), 3149-3159. doi: 10.1039/C9CP06303J PMID: 31995074
  25. Silva, A.M.; Lee, A.Y.; Gulnik, S.V.; Maier, P.; Collins, J.; Bhat, T.N.; Collins, P.J.; Cachau, R.E.; Luker, K.E.; Gluzman, I.Y.; Francis, S.E.; Oksman, A.; Goldberg, D.E.; Erickson, J.W. Structure and inhibition of plasmepsin II, a hemoglobin-degrading enzyme from Plasmodium falciparum. Proc. Natl. Acad. Sci. USA, 1996, 93(19), 10034-10039. doi: 10.1073/pnas.93.19.10034 PMID: 8816746
  26. Hammes, A.S. Modelagem Molecular de Inibidores de Aspartil Proteasepotenciais Novos Compostos Antimalariais. 2012. Available From: https://www.arca.fiocruz.br/handle/icict/12866
  27. Bassanini, I.; Parapini, S.; Galli, C.; Vaiana, N.; Pancotti, A.; Basilico, N.; Taramelli, D.; Romeo, S. Discovery and Pharmacophore Mapping of a Low‐Nanomolar Inhibitor of P. falciparum Growth. ChemMedChem, 2019, 14(23), 1982-1994. doi: 10.1002/cmdc.201900526 PMID: 31665565
  28. The Cambridge Crystallographic Data Centre. The Cambridge Crystallographic Data Centre - CCD. 2023. Available From: https://www.ccdc.cam.ac.uk/
  29. Bassanini, I.; Parapini, S.; Basilico, N.; Taramelli, D.; Romeo, S. From DC18 to MR07: A Metabolically Stable 4,4′‐Oxybisbenzoyl Amide as a Low‐Nanomolar Growth Inhibitor of P. falciparum. ChemMedChem, 2022, 17(21), e202200355. doi: 10.1002/cmdc.202200355 PMID: 36089546
  30. BioviaAccelrys Discovery Studio 3.5. 2023. Available From: https://discover.3ds.com/discovery-studio-visualizer-download
  31. Sharma, P.P.; Kumar, S.; Kaushik, K.; Singh, A.; Singh, I.K.; Grishina, M.; Pandey, K.C.; Singh, P.; Potemkin, V.; Poonam; Singh, G.; Rathi, B. In silico validation of novel inhibitors of malarial aspartyl protease, plasmepsin V and antimalarial efficacy prediction. J. Biomol. Struct. Dyn., 2022, 40(18), 8352-8364. doi: 10.1080/07391102.2021.1911855 PMID: 33870856
  32. Ji, X.; Wang, Z.; Chen, Q.; Li, J.; Wang, H.; Wang, Z.; Yang, L. In silico and in vitro antimalarial screening and validation targeting Plasmodium falciparum plasmepsin V. Molecules, 2022, 27(9), 2670. doi: 10.3390/molecules27092670 PMID: 35566023
  33. Nasamu, A.S.; Glushakova, S.; Russo, I.; Vaupel, B.; Oksman, A.; Kim, A.S.; Fremont, D.H.; Tolia, N.; Beck, J.R.; Meyers, M.J. Plasmepsins IX and X are essential and druggable mediators of malaria parasite egress and invasion. Science, 2017, 358(6362), 518-522.
  34. Pino, P.; Caldelari, R.; Mukherjee, B.; Vahokoski, J.; Klages, N.; Maco, B.; Collins, C.R.; Blackman, M.J.; Kursula, I.; Heussler, V. Multistage Antimalarial Targets the Plasmepsins IX and X Essential for Invasion and Egress. Science, 2017, 358(6362), 522-528.
  35. Munsamy, G.; Soliman, M.E.S. Unveiling a new era in malaria therapeutics: A tailored molecular approach towards the design of plasmepsin IX inhibitors. Protein J., 2019, 38(6), 616-627. doi: 10.1007/s10930-019-09871-2 PMID: 31586296
  36. Case, D.A.; Babin, V.; Berryman, J.T.; Betz, R.M.; Cai, Q.; Cerutti, D.S.; Cheatham, T.E., III; Darden, T.A.; Duke, R.E.; Gohlke, H. AMBER 14; University of California: San Francisco 2014. Available From: https://books.google.com.br/books?hl=pt-BR&lr=&id=KKlGEAAAQBAJ&oi=fnd&pg=PA5&dq=Case,+D.+A.%3B+Babin,+V.%3B+Berryman,+J.+T.%3B+Betz,+R.+M.%3B+Cai,+Q.%3B+Cerutti,+D.+S.%3B+Cheatham+III,+T.+E.%3B+Darden,+T.+A.%3B+Duke,+R.+E.%3B+Gohlke,+H.+AMBER+14%3B+University+of+California:+San+Francisco,+2014.+Google+Sch.+There+is+no+Corresp.+Rec.+this+Ref.+2014,+1%E2%80%9382&ots=iT_e1BY07Z&sig=2eop_MbETJOYdp6EZ4QlfdfbRBQ#v=onepage&q&f=false
  37. Koes, D.R.; Camacho, C.J. ZINCPharmer: Pharmacophore search of the ZINC database. Nucleic Acids Res., 2012, 40(W1), W409-W414. doi: 10.1093/nar/gks378 PMID: 22553363
  38. Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341. doi: 10.1016/j.ddtec.2004.11.007 PMID: 24981612
  39. Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623. doi: 10.1021/jm020017n PMID: 12036371
  40. Salam, S.S.; Chetia, P.; Kardong, D. In silico Docking, ADMET and QSAR Study of few Antimalarial Phytoconstituents as Inhibitors of Plasmepsin II of P. falciparum Against Malaria. Curr. Drug Ther., 2020, 15(3), 264-273. doi: 10.2174/1574885514666190923112738
  41. Morris, G.M.; Goodsell, D.S.; Huey, R.; Lindstrom, W.; Hart, W.E.; Kurowski, S.; Halliday, S.; Belew, R.; Olson, A.J. AutoDock Tolls 4.2. 2014. Available From: https://autodock.scripps.edu/wp-content/uploads/sites/56/2021/10/AutoDock4.2.6_UserGuide.pdf
  42. Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791. doi: 10.1002/jcc.21256 PMID: 19399780
  43. Néron, B.; Ménager, H.; Maufrais, C.; Joly, N.; Maupetit, J.; Letort, S.; Carrere, S.; Tuffery, P.; Letondal, C. Mobyle: A new full web bioinformatics framework. Bioinformatics, 2009, 25(22), 3005-3011. doi: 10.1093/bioinformatics/btp493 PMID: 19689959
  44. Bhusan, K.K. EasyQSAR: A Beginners Tool for QSAR in drug designing (free software for drug designing and QSAR). 2009. Available From: https://www.researchgate.net/profile/Swathik-Clarancia-2/publication/323791617_Quantitative_Structure-Activity_Relationship_QSAR_Modeling_Approaches_to_Biological_Applications/links/5ee4e33d458515814a5bb2b1/Quantitative-Structure-Activity-Relationship-QSAR-Modeling-Approaches-to-Biological-Applications.pdf
  45. Phillips, M.A.; Rathod, P.K. Plasmodium dihydroorotate dehydrogenase: A promising target for novel anti-malarial chemotherapy. Drug Targets-Infectious Disord., 2010, 10(3), 226-239. doi: 10.2174/187152610791163336 PMID: 20334617
  46. Phillips, M.A.; Lotharius, J.; Marsh, K.; White, J.; Dayan, A.; White, K.L.; Njoroge, J.W.; El Mazouni, F.; Lao, Y.; Kokkonda, S.; Tomchick, D.R.; Deng, X.; Laird, T.; Bhatia, S.N.; March, S.; Ng, C.L.; Fidock, D.A.; Wittlin, S.; Lafuente-Monasterio, M.; Benito, F.J.G.; Alonso, L.M.S.; Martinez, M.S.; Jimenez-Diaz, M.B.; Bazaga, S.F.; Angulo-Barturen, I.; Haselden, J.N.; Louttit, J.; Cui, Y.; Sridhar, A.; Zeeman, A.M.; Kocken, C.; Sauerwein, R.; Dechering, K.; Avery, V.M.; Duffy, S.; Delves, M.; Sinden, R.; Ruecker, A.; Wickham, K.S.; Rochford, R.; Gahagen, J.; Iyer, L.; Riccio, E.; Mirsalis, J.; Bathhurst, I.; Rueckle, T.; Ding, X.; Campo, B.; Leroy, D.; Rogers, M.J.; Rathod, P.K.; Burrows, J.N.; Charman, S.A. A long-duration dihydroorotate dehydrogenase inhibitor (DSM265) for prevention and treatment of malaria. Sci. Transl. Med., 2015, 7(296), 296ra111. doi: 10.1126/scitranslmed.aaa6645 PMID: 26180101
  47. Alzain, A.A.; Ahmed, Z.A.M.; Mahadi, M.A.; khairy, E.A.; Elbadwi, F.A. Identification of novel Plasmodium falciparum dihydroorotate dehydrogenase inhibitors for malaria using in silico studies. Sci. Am., 2022, 16, e01214. doi: 10.1016/j.sciaf.2022.e01214
  48. Enamine Compound Library. Enamine. 2023. Available From: https://enamine.net/compound-libraries
  49. Roos, K.; Wu, C.; Damm, W.; Reboul, M.; Stevenson, J.M.; Lu, C.; Dahlgren, M.K.; Mondal, S.; Chen, W.; Wang, L.; Abel, R.; Friesner, R.A.; Harder, E.D. OPLS3e: Extending Force Field Coverage for Drug-Like Small Molecules. J. Chem. Theory Comput., 2019, 15(3), 1863-1874. doi: 10.1021/acs.jctc.8b01026 PMID: 30768902
  50. Bernstein, F.C.; Koetzle, T.F.; Williams, G.J.B.; Meyer, E.F., Jr; Brice, M.D.; Rodgers, J.R.; Kennard, O.; Shimanouchi, T.; Tasumi, M. The Protein Data Bank. A computer-based archival file for macromolecular structures. Eur. J. Biochem., 1977, 80(2), 319-324. doi: 10.1111/j.1432-1033.1977.tb11885.x PMID: 923582
  51. RCSB. Protein Data Bank. Available From: https://www.rcsb.org/
  52. Palmer, M.J.; Deng, X.; Watts, S.; Krilov, G.; Gerasyuto, A.; Kokkonda, S.; El Mazouni, F.; White, J.; White, K.L.; Striepen, J.; Bath, J.; Schindler, K.A.; Yeo, T.; Shackleford, D.M.; Mok, S.; Deni, I.; Lawong, A.; Huang, A.; Chen, G.; Wang, W.; Jayaseelan, J.; Katneni, K.; Patil, R.; Saunders, J.; Shahi, S.P.; Chittimalla, R.; Angulo-Barturen, I.; Jiménez-Díaz, M.B.; Wittlin, S.; Tumwebaze, P.K.; Rosenthal, P.J.; Cooper, R.A.; Aguiar, A.C.C.; Guido, R.V.C.; Pereira, D.B.; Mittal, N.; Winzeler, E.A.; Tomchick, D.R.; Laleu, B.; Burrows, J.N.; Rathod, P.K.; Fidock, D.A.; Charman, S.A.; Phillips, M.A. Potent Antimalarials with Development Potential Identified by Structure-Guided Computational Optimization of a Pyrrole-Based Dihydroorotate Dehydrogenase Inhibitor Series. J. Med. Chem., 2021, 64(9), 6085-6136. doi: 10.1021/acs.jmedchem.1c00173 PMID: 33876936
  53. Ioakimidis, L.; Thoukydidis, L.; Mirza, A.; Naeem, S.; Reynisson, J. Benchmarking the Reliability of QikProp. Correlation between Experimental and Predicted Values. QSAR Comb. Sci., 2008, 27(4), 445-456. doi: 10.1002/qsar.200730051
  54. Bhachoo, J.; Beuming, T. Investigating Protein-Peptide Interactions Using the Schrödinger Computational Suite. Methods Mol. Biol., 2017, 1561(4), 235-254.
  55. Rawat, R.; Verma, S.M. High-throughput virtual screening approach involving pharmacophore mapping, ADME filtering, molecular docking and MM-GBSA to identify new dual target inhibitors of Pf DHODH and Pf Cytbc1 complex to combat drug resistant malaria. J. Biomol. Struct. Dyn., 2021, 39(14), 5148-5159. doi: 10.1080/07391102.2020.1784288 PMID: 32579074
  56. Van Voorhis, W.C.; Adams, J.H.; Adelfio, R.; Ahyong, V.; Akabas, M.H.; Alano, P.; Alday, A.; Alemán Resto, Y.; Alsibaee, A.; Alzualde, A.; Andrews, K.T.; Avery, S.V.; Avery, V.M.; Ayong, L.; Baker, M.; Baker, S.; Ben Mamoun, C.; Bhatia, S.; Bickle, Q.; Bounaadja, L.; Bowling, T.; Bosch, J.; Boucher, L.E.; Boyom, F.F.; Brea, J.; Brennan, M.; Burton, A.; Caffrey, C.R.; Camarda, G.; Carrasquilla, M.; Carter, D.; Belen Cassera, M.; Chih-Chien Cheng, K.; Chindaudomsate, W.; Chubb, A.; Colon, B.L.; Colón-López, D.D.; Corbett, Y.; Crowther, G.J.; Cowan, N.; D’Alessandro, S.; Le Dang, N.; Delves, M.; DeRisi, J.L.; Du, A.Y.; Duffy, S.; Abd El-Salam El-Sayed, S.; Ferdig, M.T.; Fernández Robledo, J.A.; Fidock, D.A.; Florent, I.; Fokou, P.V.T.; Galstian, A.; Gamo, F.J.; Gokool, S.; Gold, B.; Golub, T.; Goldgof, G.M.; Guha, R.; Guiguemde, W.A.; Gural, N.; Guy, R.K.; Hansen, M.A.E.; Hanson, K.K.; Hemphill, A.; Hooft van Huijsduijnen, R.; Horii, T.; Horrocks, P.; Hughes, T.B.; Huston, C.; Igarashi, I.; Ingram-Sieber, K.; Itoe, M.A.; Jadhav, A.; Naranuntarat Jensen, A.; Jensen, L.T.; Jiang, R.H.Y.; Kaiser, A.; Keiser, J.; Ketas, T.; Kicka, S.; Kim, S.; Kirk, K.; Kumar, V.P.; Kyle, D.E.; Lafuente, M.J.; Landfear, S.; Lee, N.; Lee, S.; Lehane, A.M.; Li, F.; Little, D.; Liu, L.; Llinás, M.; Loza, M.I.; Lubar, A.; Lucantoni, L.; Lucet, I.; Maes, L.; Mancama, D.; Mansour, N.R.; March, S.; McGowan, S.; Medina Vera, I.; Meister, S.; Mercer, L.; Mestres, J.; Mfopa, A.N.; Misra, R.N.; Moon, S.; Moore, J.P.; Morais Rodrigues da Costa, F.; Müller, J.; Muriana, A.; Nakazawa Hewitt, S.; Nare, B.; Nathan, C.; Narraidoo, N.; Nawaratna, S.; Ojo, K.K.; Ortiz, D.; Panic, G.; Papadatos, G.; Parapini, S.; Patra, K.; Pham, N.; Prats, S.; Plouffe, D.M.; Poulsen, S.A.; Pradhan, A.; Quevedo, C.; Quinn, R.J.; Rice, C.A.; Abdo Rizk, M.; Ruecker, A.; St Onge, R.; Salgado Ferreira, R.; Samra, J.; Robinett, N.G.; Schlecht, U.; Schmitt, M.; Silva Villela, F.; Silvestrini, F.; Sinden, R.; Smith, D.A.; Soldati, T.; Spitzmüller, A.; Stamm, S.M.; Sullivan, D.J.; Sullivan, W.; Suresh, S.; Suzuki, B.M.; Suzuki, Y.; Swamidass, S.J.; Taramelli, D.; Tchokouaha, L.R.Y.; Theron, A.; Thomas, D.; Tonissen, K.F.; Townson, S.; Tripathi, A.K.; Trofimov, V.; Udenze, K.O.; Ullah, I.; Vallieres, C.; Vigil, E.; Vinetz, J.M.; Voong Vinh, P.; Vu, H.; Watanabe, N.A.; Weatherby, K.; White, P.M.; Wilks, A.F.; Winzeler, E.A.; Wojcik, E.; Wree, M.; Wu, W.; Yokoyama, N.; Zollo, P.H.A.; Abla, N.; Blasco, B.; Burrows, J.; Laleu, B.; Leroy, D.; Spangenberg, T.; Wells, T.; Willis, P.A. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog., 2016, 12(7), e1005763. doi: 10.1371/journal.ppat.1005763 PMID: 27467575
  57. Vyas, V.K.; Qureshi, G.; Ghate, M.; Patel, H.; Dalai, S. Identification of novel Pf DHODH inhibitors as antimalarial agents via pharmacophore-based virtual screening followed by molecular docking and in vivo antimalarial activity. SAR QSAR Environ. Res., 2016, 27(6), 427-440. doi: 10.1080/1062936X.2016.1189959 PMID: 27310104
  58. Lasko, T.A.; Bhagwat, J.G.; Zou, K.H.; Ohno-Machado, L. The use of receiver operating characteristic curves in biomedical informatics. J. Biomed. Inform., 2005, 38(5), 404-415. doi: 10.1016/j.jbi.2005.02.008 PMID: 16198999
  59. Zhou, Y.; Di, B.; Niu, M.M. Structure-based pharmacophore design and virtual screening for novel tubulin inhibitors with potential anticancer activity. Molecules, 2019, 24(17), 3181. doi: 10.3390/molecules24173181 PMID: 31480625
  60. OSIRIS 5.0. DATA WARRIOR Program. Available From: https://openmolecules.org/datawarrior/
  61. Wadood, A.; ulhaq, Z. In silico identification of novel inhibitors against Plasmodium falciparum dihydroorate dehydrogenase. J. Mol. Graph. Model., 2013, 40, 40-47. doi: 10.1016/j.jmgm.2012.11.010 PMID: 23353582
  62. Booker, M.L.; Bastos, C.M.; Kramer, M.L.; Barker, R.H., Jr; Skerlj, R.; Sidhu, A.B.; Deng, X.; Celatka, C.; Cortese, J.F.; Guerrero Bravo, J.E.; Crespo Llado, K.N.; Serrano, A.E.; Angulo-Barturen, I.; Jiménez-Díaz, M.B.; Viera, S.; Garuti, H.; Wittlin, S.; Papastogiannidis, P.; Lin, J.; Janse, C.J.; Khan, S.M.; Duraisingh, M.; Coleman, B.; Goldsmith, E.J.; Phillips, M.A.; Munoz, B.; Wirth, D.F.; Klinger, J.D.; Wiegand, R.; Sybertz, E. Novel inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase with anti-malarial activity in the mouse model. J. Biol. Chem., 2010, 285(43), 33054-33064. doi: 10.1074/jbc.M110.162081 PMID: 20702404
  63. Opo, F.A.D.M.; Alkarim, S.; Alrefaei, G.I.; Molla, M.H.R.; Alsubhi, N.H.; Alzahrani, F.; Ahammad, F. Pharmacophore-model-based virtual-screening approaches identified novel natural molecular candidates for treating human neuroblastoma. Curr. Issues Mol. Biol., 2022, 44(10), 4838-4858. doi: 10.3390/cimb44100329 PMID: 36286044
  64. Kumar, A.; Rathi, E.; Kini, S.G. E-pharmacophore modelling, virtual screening, molecular dynamics simulations and in-silico ADME analysis for identification of potential E6 inhibitors against cervical cancer. J. Mol. Struct., 2019, 1189, 299-306. doi: 10.1016/j.molstruc.2019.04.023
  65. Vyas, V.K.; Shukla, T.; Tulsian, K.; Sharma, M.; Patel, S. Integrated structure-guided computational design of novel substituted quinolizin-4-ones as Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors. Comput. Biol. Chem., 2022, 101, 107787. doi: 10.1016/j.compbiolchem.2022.107787 PMID: 36401950
  66. Gogoi, N.; Chetia, D.; Gogoi, B.; Das, A. Multiple-targets directed screening of flavonoid compounds from Citrus Species to find out antimalarial lead with predicted mode of action: An in silico and whole cell-based in vitro approach. Curr. Computeraided Drug Des., 2021, 17(1), 69-82. doi: 10.2174/18756697MTAzhMjIjw PMID: 31878860
  67. Kutmon, M.; Ehrhart, F.; Willighagen, E.L.; Evelo, C.T.; Coort, S.L. CyTargetLinker app update: A flexible solution for network extension in Cytoscape. F1000 Res., 2018, 7, 743. doi: 10.12688/f1000research.14613.1 PMID: 31489175
  68. Fu, C.; Liu, C.; Li, T.; Zhang, X.; Wang, F.; Yang, J.; Jiang, Y.; Cui, P.; Li, H. DFT calculations: A powerful tool for better understanding of electrocatalytic oxygen reduction reactions on Pt-based metallic catalysts. Comput. Mater. Sci., 2019, 170, 109202. doi: 10.1016/j.commatsci.2019.109202
  69. Wilson, M.T.; Bickar, D. Cytochrome oxidase as a proton pump. J. Bioenerg. Biomembr., 1991, 23(5), 755-771. doi: 10.1007/BF00786000 PMID: 1660873
  70. Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J., 2009, 417(1), 1-13. doi: 10.1042/BJ20081386 PMID: 19061483
  71. Sodero, A.C.R.; Abrahim-Vieira, B.; Torres, P.H.M.; Pascutti, P.G.; Garcia, C.R.S.; Ferreira, V.F.; Rocha, D.R.; Ferreira, S.B.; Silva, F.P., Jr Insights into cytochrome bc1 complex binding mode of antimalarial 2-hydroxy-1,4-naphthoquinones through molecular modelling. Mem. Inst. Oswaldo Cruz, 2017, 112(4), 299-308. doi: 10.1590/0074-02760160417 PMID: 28327793
  72. Audu, O.; Stander, A.; Ajani, O.; Egieyeh, S.; October, N. In silico design, chemical synthesis and biological screening of novel 4‐(1 H)‐pyridone‐based antimalarial agents. Chem. Biol. Drug Des., 2022, 99(5), 674-687. doi: 10.1111/cbdd.13987 PMID: 34850571
  73. Repasky, M.P.; Shelley, M.; Friesner, R.A. Flexible ligand docking with Glide. Curr. Protoc. Bioinformat., 2007, 8(1), 12. PMID: 18428795
  74. Birth, D.; Kao, W.C.; Hunte, C. Structural analysis of atovaquone-inhibited cytochrome bc1 complex reveals the molecular basis of antimalarial drug action. Nat. Commun., 2014, 5(1), 4029. doi: 10.1038/ncomms5029 PMID: 24893593
  75. Massengo-Tiassé, R.P.; Cronan, J.E. Diversity in enoyl-acyl carrier protein reductases. Cell. Mol. Life Sci., 2009, 66(9), 1507-1517. doi: 10.1007/s00018-009-8704-7 PMID: 19151923
  76. Srivastava, V.; Srivastava, K.; Singh, P.; Dwivedi, V. Fatty acid synthase (FAS) machinery in the apicoplast: An efficient drug target for Plasmodium falciparum. Mater. Today Proc., 2022, 68, 785-790. doi: 10.1016/j.matpr.2022.06.142
  77. Costa Júnior, D.B.; Araújo, J.S.C.; Oliveira, L.M.; Neri, F.S.M.; Moreira, P.O.L.; Taranto, A.G.; Fonseca, A.L.; Varotti, F.P.; Leite, F.H.A. A novel antiplasmodial compound: Integration of in silico and in vitro assays. J. Biomol. Struct. Dyn., 2022, 40(14), 6295-6307. doi: 10.1080/07391102.2021.1882339 PMID: 33554762
  78. Joshi, S.D.; Dixit, S.R.; Basha, J.; Kulkarni, V.H.; Aminabhavi, T.M.; Nadagouda, M.N.; Lherbet, C. Pharmacophore mapping, molecular docking, chemical synthesis of some novel pyrrolyl benzamide derivatives and evaluation of their inhibitory activity against enoyl-ACP reductase (InhA) and Mycobacterium tuberculosis. Bioorg. Chem., 2018, 81, 440-453. doi: 10.1016/j.bioorg.2018.08.035 PMID: 30223149
  79. Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2009, 31(2), NA. doi: 10.1002/jcc.21334 PMID: 19499576
  80. Trott, O.; Olson, A.J. AutoDock Vina 1.1.1. 2023. Available From: https://vina.scripps.edu/
  81. Maity, K.; Bhargav, S.P.; Sankaran, B.; Surolia, N.; Surolia, A.; Suguna, K. X-ray crystallographic analysis of the complexes of enoyl acyl carrier protein reductase of Plasmodium falciparum with triclosan variants to elucidate the importance of different functional groups in enzyme inhibition. IUBMB Life, 2010, 62(6), 467-476. PMID: 20503440
  82. Roca, C.; Avalos-Padilla, Y.; Prieto-Simón, B.; Iglesias, V.; Ramírez, M.; Imperial, S.; Fernàndez-Busquets, X. Selection of an Aptamer against the Enzyme 1-deoxy-D-xylulose-5-phosphate Reductoisomerase from Plasmodium falciparum. Pharmaceutics, 2022, 14(11), 1-23. PMID: 36432706
  83. Mumtaz, A.; Ashfaq, U.A.; Ul Qamar, M.T.; Anwar, F.; Gulzar, F.; Ali, M.A.; Saari, N.; Pervez, M.T. MPD3: A useful medicinal plants database for drug designing. Nat. Prod. Res., 2017, 31(11), 1228-1236. PMID: 27681445
  84. Mangal, M.; Sagar, P.; Singh, H.; Raghava, G.P.S.; Agarwal, S.M. NPACT: Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target database. Nucleic Acids Res., 2013, 41(Database issue), D1124-D1129. PMID: 23203877
  85. Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S.H. PubChem Substance and Compound databases. Nucleic Acids Res., 2016, 44(D1), D1202-D1213. PMID: 26400175
  86. Vilar, S.; Cozza, G.; Moro, S. Medicinal chemistry and the molecular operating environment (MOE): Application of QSAR and molecular docking to drug discovery. Curr. Top. Med. Chem., 2008, 8(18), 1555-1572. PMID: 19075767
  87. Ali, F.; Wali, H.; Jan, S.; Zia, A.; Aslam, M.; Ahmad, I.; Afridi, S.G.; Shams, S.; Khan, A. Analysing the essential proteins set of Plasmodium falciparum PF3D7 for novel drug targets identification against malaria. Malar. J., 2021, 20(1), 335. PMID: 34344361
  88. Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res., 2018, 46(D1), D1074-D1082. doi: 10.1093/nar/gkx1037 PMID: 29126136
  89. Pesaresi, A.; Lamba, D. Torpedo Californica Acetylcholinesterase in Complex with a Tacrine-Nicotinamide Hybrid Inhibitor. Protein Data Bank, https://www.rcsb.org/structure/5NAU
  90. Sharma, A.; Yogavel, M.; Sharma, A. Structural and functional attributes of malaria parasite diadenosine tetraphosphate hydrolase. Sci. Rep., 2016, 6(1), 19981. PMID: 26829485
  91. Hussein, H.A.; Borrel, A.; Geneix, C.; Petitjean, M.; Regad, L.; Camproux, A-C. PockDrug-Server: A new web server for predicting pocket druggability on holo and apo proteins. Nucleic Acids Res., 2015, 43(W1), W436-42. PMID: 25956651
  92. Koes, D.R. The Pharmit Backend: A Computer Systems Approach to Enabling Interactive Online Drug Discovery. IBM J. Res. Develop., 2018, 62(6), 1-6. PMID: 33871478
  93. Manhas, A.; Lone, M.Y.; Jha, P.C. In search of the representative pharmacophore hypotheses of the enzymatic proteome of Plasmodium falciparum: A multicomplex-based approach. Mol. Divers., 2019, 23(2), 453-470. PMID: 30315397
  94. Gaulton, A.; Hersey, A.; Nowotka, M.; Bento, A.P.; Chambers, J.; Mendez, D.; Mutowo, P.; Atkinson, F.; Bellis, L.J.; Cibrián-Uhalte, E.; Davies, M.; Dedman, N.; Karlsson, A.; Magariños, M.P.; Overington, J.P.; Papadatos, G.; Smit, I.; Leach, A.R. The ChEMBL database in 2017. Nucleic Acids Res., 2017, 45(D1), D945-D954. doi: 10.1093/nar/gkw1074 PMID: 27899562
  95. Gaulton, A.; Bellis, L.J.; Bento, A.P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani, B.; Overington, J.P. ChEMBL: A large-scale bioactivity database for drug discovery. Nucleic Acids Res., 2012, 40(Database issue), D1100-D1107. doi: 10.1093/nar/gkr777 PMID: 21948594
  96. EMBL-EBI. ChEMBL Data Base. 2019. Available From: https://www.ebi.ac.uk/chembl/
  97. Wassermann, A.M.; Bajorath, J. BindingDB and ChEMBL: Online compound databases for drug discovery. Expert Opin. Drug Discov., 2011, 6(7), 683-687. PMID: 22650976
  98. Ngo Hanna, J.; Nziko, V.P.N.; Ntie-Kang, F.; Mbah, J.A.; Toze, F.A.A. The use of minimal topological differences to inspire the design of novel tetrahydroisoquinoline analogues with antimalarial activity. Heliyon, 2021, 7(5), e07032. doi: 10.1016/j.heliyon.2021.e07032 PMID: 34095565
  99. Chua, M.J.; Robaa, D.; Skinner-Adams, T.S.; Sippl, W.; Andrews, K.T. Activity of bromodomain protein inhibitors/binders against asexual-stage Plasmodium falciparum parasites. Int. J. Parasitol. Drugs Drug Resist., 2018, 8(2), 189-193. doi: 10.1016/j.ijpddr.2018.03.001 PMID: 29631126
  100. Tallant, C.; Bamborough, P.; Chung, C.; Gamo, F.J.; Kirkpatrick, R. Expanding Bromodomain Targeting into Neglected Parasitic Diseases. ACS Infect. Dis., 2021, 7(11), 2953-2958. doi: 10.1016/j.ijpddr.2018.03.001 PMID: 29631126
  101. Maree, J.P. The Genome-Wide Nucleosome Positions in Trypanosoma Brucei Procyclic and Bloodstream Forms. 2014. Available From: https://scholar.ufs.ac.za/handle/11660/1412
  102. Bhattacharjee, A.K.; Nichols, D.A.; Gerena, L.; Roncal, N.; Gutteridge, C.E. An in silico 3D pharmacophore model of chalcones useful in the design of novel antimalarial agents. Med. Chem., 2007, 3(4), 317-326. doi: 10.2174/157340607781024357 PMID: 17627568
  103. Ibraheem, Z.O.; Majid, R.A.; Sidek, H.M.; Noor, S.M.; Yam, M.F.; Abd Rachman Isnadi, M.F.; Basir, R. In vitro antiplasmodium and chloroquine resistance reversal effects of andrographolide. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-16. doi: 10.1155/2019/7967980 PMID: 31915453
  104. Bhattacharjee, A.K. In silico Three Dimensional Pharmacophore Models to Aid the Discovery and Design of New Antimalarial Agents. In: Proceedings of the 6th international conference on Computational Science - Volume Part I, United Kingdom, 2006. doi: 10.1007/11758501_54
  105. Barmade, M.; Murumkar, P.; Sharma, M.; Shingala, K.; Giridhar, R.; Yadav, M. Discovery of anti-malarial agents through application of in silico studies. Comb. Chem. High Throughput Screen., 2015, 18(2), 151-187. doi: 10.2174/1386207318666141229125852 PMID: 25543680
  106. Zaib, S.; Khan, I. Synthetic and medicinal chemistry of phthalazines: Recent developments, opportunities and challenges. Bioorg. Chem., 2020, 105, 104425. doi: 10.1016/j.bioorg.2020.104425 PMID: 33157344
  107. Quiliano, M.; Mendoza, A.; Fong, K.Y.; Pabón, A.; Goldfarb, N.E.; Fabing, I.; Vettorazzi, A.; López de Cerain, A.; Dunn, B.M.; Garavito, G.; Wright, D.W.; Deharo, E.; Pérez-Silanes, S.; Aldana, I.; Galiano, S. Exploring the scope of new arylamino alcohol derivatives: Synthesis, antimalarial evaluation, toxicological studies, and target exploration. Int. J. Parasitol. Drugs Drug Resist., 2016, 6(3), 184-198. doi: 10.1016/j.ijpddr.2016.09.004 PMID: 27718413
  108. Roy, K.; Ojha, P.K. Advances in quantitative structure–activity relationship models of antimalarials. Expert Opin. Drug Discov., 2010, 5(8), 751-778. doi: 10.1517/17460441.2010.497812 PMID: 22827798
  109. Ojha, P.K.; Roy, K. First report on exploring structural requirements of α and β thymidine analogs for PfTMPK inhibitory activity using in silico studies. Biosystems, 2013, 113(3), 177-195. doi: 10.1016/j.biosystems.2013.07.005 PMID: 23850534
  110. Wadood, A.; Ghufran, M.; Hassan, S.F.; Khan, H.; Azam, S.S.; Rashid, U. In silico identification of promiscuous scaffolds as potential inhibitors of 1-deoxy- D -xylulose 5-phosphate reductoisomerase for treatment of Falciparum malaria. Pharm. Biol., 2017, 55(1), 19-32. doi: 10.1080/13880209.2016.1225778 PMID: 27650666
  111. Brogi, S.; Giovani, S.; Brindisi, M.; Gemma, S.; Novellino, E.; Campiani, G.; Blackman, M.J.; Butini, S. In silico study of subtilisin-like protease 1 (SUB1) from different Plasmodium species in complex with peptidyl-difluorostatones and characterization of potent pan-SUB1 inhibitors. J. Mol. Graph. Model., 2016, 64(64), 121-130. doi: 10.1016/j.jmgm.2016.01.005 PMID: 26826801
  112. Rodrigues, T.; Moreira, R.; Gut, J.; Rosenthal, P.J.; O Neill, P.M.; Biagini, G.A.; Lopes, F.; dos Santos, D.J.V.A.; Guedes, R.C. Identification of new antimalarial leads by use of virtual screening against cytochrome bc1. Bioorg. Med. Chem., 2011, 19(21), 6302-6308. doi: 10.1016/j.bmc.2011.09.004 PMID: 21958736
  113. Kamaria, P.; Kawathekar, N. Ligand-based 3D-QSAR analysis and virtual screening in exploration of new scaffolds as Plasmodium falciparum glutathione reductase inhibitors. Med. Chem. Res., 2014, 23(1), 25-33. doi: 10.1007/s00044-013-0603-7
  114. Bhattacharjee, A.K. In silico three-dimensional pharmacophores for aiding the discovery of the Pfmrk (Plasmodium cyclin-dependent protein kinases) specific inhibitors for the therapeutic treatment of malaria. Expert Opin. Drug Discov., 2007, 2(8), 1115-1127. doi: 10.1517/17460441.2.8.1115 PMID: 23484876
  115. Owono Owono, L.C.; Ntie-Kang, F.; Keita, M.; Megnassan, E.; Frecer, V.; Miertus, S. Virtually Designed Triclosan-Based Inhibitors of Enoyl-Acyl Carrier Protein Reductase of Mycobacterium tuberculosis and of Plasmodium falciparum. Mol. Inform., 2015, 34(5), 292-307. doi: 10.1002/minf.201400141 PMID: 27490275
  116. Aher, R.; Roy, K. Classification SAR modeling of diverse quinolone compounds for antimalarial potency against Plasmodium falciparum. Comb. Chem. High Throughput Screen., 2014, 17(5), 396-406. doi: 10.2174/1386207316666131230093802 PMID: 24372050
  117. Aher, R.B.; Roy, K. Exploring structural requirements for the inhibition of Plasmodium falciparum calcium-dependent protein kinase-4 (PfCDPK-4) using multiple in silico approaches. RSC Advances, 2016, 6(57), 51957-51982. doi: 10.1039/C6RA05692J
  118. Burger, P.B.; Williams, M.; Sprenger, J.; Reeksting, S.B.; Botha, M.; Müller, I.B.; Joubert, F.; Birkholtz, L.M.; Louw, A.I. A novel inhibitor of Plasmodium falciparum spermidine synthase: A twist in the tail. Malar. J., 2015, 14(1), 54. doi: 10.1186/s12936-015-0572-z PMID: 25651815
  119. Dow, G.S.; Koenig, M.L.; Wolf, L.; Gerena, L.; Lopez-Sanchez, M.; Hudson, T.H.; Bhattacharjee, A.K. The antimalarial potential of 4-quinolinecarbinolamines may be limited due to neurotoxicity and cross-resistance in mefloquine-resistant Plasmodium falciparum strains. Antimicrob. Agents Chemother., 2004, 48(7), 2624-2632. doi: 10.1128/AAC.48.7.2624-2632.2004 PMID: 15215119
  120. Savini, L.; Taramelli, D.; Basilico, N.; Parapini, S.; Rottmann, M.; Brun, R.; Lamponi, S.; Caccia, S.; Guiso, G.; Summers, R.L.; Martin, R.E.; Saponara, S.; Gorelli, B.; Novellino, E. Optimization of 4 Aminoquinoline/Clotrimazole-Based Hybrid Antimalarials: Further Structure − Activity Relationships, in vivo Studies, and Preliminary Toxicity Pro Fi Ling. 2012. Available From: https://scholar.google.com.br/schhp?hl=pt-BR&as_sdt=0,5
  121. Chauhan, M.; Kumar, R. A comprehensive review on bioactive fused heterocycles as purine-utilizing enzymes inhibitors. Med. Chem. Res., 2015, 24(6), 2259-2282. doi: 10.1007/s00044-014-1295-3
  122. Agarwal, A.; Paliwal, S.; Mishra, R.; Sharma, S.; Kumar Dwivedi, A.; Tripathi, R.; Gunjan, S. Discovery of a selective, safe and novel anti-malarial compound with activity against chloroquine resistant strain of Plasmodium falciparum. Sci. Rep., 2015, 5(1), 13838. doi: 10.1038/srep13838 PMID: 26346444
  123. Vyas, V.K.; Bhati, S.; Patel, S.; Ghate, M. Structure- and ligand-based drug design methods for the modeling of antimalarial agents: A review of updates from 2012 onwards. J. Biomol. Struct. Dyn., 2022, 40(20), 10481-10506. doi: 10.1080/07391102.2021.1932598 PMID: 34129805
  124. Kumi, R.O.; Oti, B.; Abo-Dya, N.E.; Alahmdi, M.I.; Soliman, M.E.S. Bridging the gap in malaria parasite resistance, current interventions, and the way forward from in silico perspective: A review. Molecules, 2022, 27(22), 7915. doi: 10.3390/molecules27227915 PMID: 36432016
  125. Batool, S.; Khan, Z.; Kamal, W.; Mushtaq, G.; Kamal, M. In silico screening for identification of novel anti-malarial inhibitors by molecular docking, pharmacophore modeling and virtual screening. Med. Chem., 2015, 11(7), 687-700. doi: 10.2174/1573406411666150305113533 PMID: 25741881
  126. Caballero-Alfonso, A.Y.; Cruz-Monteagudo, M.; Tejera, E.; Benfenati, E.; Borges, F.; Cordeiro, M.N.D.S.; Armijos-Jaramillo, V.; Perez-Castillo, Y. Ensemble-based modeling of chemical compounds with antimalarial activity. Curr. Top. Med. Chem., 2019, 19(11), 957-969. doi: 10.2174/1568026619666190510100313 PMID: 31074369
  127. Ojha, P.; Roy, K. The current status of antimalarial drug research with special reference to application of QSAR models. Comb. Chem. High Throughput Screen., 2015, 18(2), 91-128. doi: 10.2174/1386207318666141229125527 PMID: 25543681
  128. Rout, S.; Mahapatra, R.K. In silico screening of novel inhibitors of M17 Leucine Amino Peptidase (LAP) of Plasmodium vivax as therapeutic candidate. Biomed. Pharmacother., 2016, 82, 192-201. doi: 10.1016/j.biopha.2016.04.057 PMID: 27470355
  129. Bhattacharjee, A.K.; Geyer, J.A.; Woodard, C.L.; Kathcart, A.K.; Nichols, D.A.; Prigge, S.T.; Li, Z.; Mott, B.T.; Waters, N.C. A three-dimensional in silico pharmacophore model for inhibition of Plasmodium falciparum cyclin-dependent kinases and discovery of different classes of novel Pfmrk specific inhibitors. J. Med. Chem., 2004, 47(22), 5418-5426. doi: 10.1021/jm040108f PMID: 15481979
  130. Kumar Ojha, P.; Roy, K. Exploring QSAR, pharmacophore mapping and docking studies and virtual library generation for cycloguanil derivatives as PfDHFR-TS inhibitors. Med. Chem., 2011, 7(3), 173-199. doi: 10.2174/157340611795564295 PMID: 21486210

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024