The Prognostic Hub Gene POLE2 Promotes BLCA Cell Growth via the PI3K/AKT Signaling Pathway


Cite item

Full Text

Abstract

Background::BLCA is a common urothelial malignancy characterized by a high recurrence rate. Despite its prevalence, the molecular mechanisms underlying its development remain unclear.

Aims::This study aimed to explore new prognostic biomarkers and investigate the underlying mechanism of bladder cancer (BLCA).

Objective::The objective of this study is to identify key prognostic biomarkers for BLCA and to elucidate their roles in the disease.

Methods::We first collected the overlapping DEGs from GSE42089 and TCGA-BLCA samples for the subsequent weighted gene co-expression network analysis (WGCNA) to find a key module. Then, key module genes were analyzed by the MCODE algorithm, prognostic risk model, expression and immunohistochemical staining to identify the prognostic hub gene. Finally, the hub gene was subjected to clinical feature analysis, as well as cellular function assays.

Results::In WGCNA on 1037 overlapping genes, the blue module was the key module. After a series of bioinformatics analyses, POLE2 was identified as a prognostic hub gene in BLCA from potential genes (TROAP, POLE2, ANLN, and E2F8). POLE2 level was increased in BLCA and related to different clinical features of BLCA patients. Cellular assays showed that si-POLE2 inhibited BLCA proliferation, and si-POLE2+ 740Y-P in BLCA cells up-regulated the PI3K and AKT protein levels.

Conclusion::In conclusion, POLE2 was identified to be a promising prognostic biomarker as an oncogene in BLCA. It was also found that POLE2 exerts a promoting function by the PI3K/AKT signaling pathway in BLCA.

About the authors

Bingde Yin

Department of Urology, Minhang Hospital, Fudan University

Email: info@benthamscience.net

Minke He

Department of Urology, Minhang Hospital, Fudan University

Email: info@benthamscience.net

Xuwei Lu

Department of Urology, Minhang Hospital, Fudan University

Author for correspondence.
Email: info@benthamscience.net

Chang He

Department of Urology, Minhang Hospital, Fudan University

Author for correspondence.
Email: info@benthamscience.net

Dongzhen Jiang

Department of Urology, Minhang Hospital, Fudan University

Email: info@benthamscience.net

Huawei Zhang

Department of Urology, Minhang Hospital, Fudan University

Email: info@benthamscience.net

References

  1. Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386. doi: 10.1002/ijc.29210 PMID: 25220842
  2. Qu, G.; Liu, Z.; Yang, G.; Xu, Y.; Xiang, M.; Tang, C. Development of a prognostic index and screening of prognosis related genes based on an immunogenomic landscape analysis of bladder cancer. Aging, 2021, 13(8), 12099-12112. doi: 10.18632/aging.202917 PMID: 33888644
  3. Lenis, A.T.; Lec, P.M.; Chamie, K.; Mshs, M. Bladder cancer. JAMA, 2020, 324(19), 1980-1991. doi: 10.1001/jama.2020.17598 PMID: 33201207
  4. Dy, G.W.; Gore, J.L.; Forouzanfar, M.H.; Naghavi, M.; Fitzmaurice, C. Global burden of urologic cancers, 1990–2013. Eur. Urol., 2017, 71(3), 437-446. doi: 10.1016/j.eururo.2016.10.008 PMID: 28029399
  5. Sievert, K.D.; Amend, B.; Nagele, U.; Schilling, D.; Bedke, J.; Horstmann, M.; Hennenlotter, J.; Kruck, S.; Stenzl, A. Economic aspects of bladder cancer: What are the benefits and costs? World J. Urol., 2009, 27(3), 295-300. doi: 10.1007/s00345-009-0395-z PMID: 19271220
  6. Humphrey, P.A.; Moch, H.; Cubilla, A.L.; Ulbright, T.M.; Reuter, V.E. The 2016 WHO classification of tumours of the urinary system and male genital organs—part B: Prostate and bladder tumours. Eur. Urol., 2016, 70(1), 106-119. doi: 10.1016/j.eururo.2016.02.028 PMID: 26996659
  7. Saginala, K.; Barsouk, A.; Aluru, J.S.; Rawla, P.; Padala, S.A.; Barsouk, A. Epidemiology of bladder cancer. Med. Sci., 2020, 8(1), 15. doi: 10.3390/medsci8010015 PMID: 32183076
  8. Konety, B.; Isharwal, S. Non-muscle invasive bladder cancer risk stratification. Indian J. Urol., 2015, 31(4), 289-296.
  9. Lerner, S.P.; Bajorin, D.F.; Dinney, C.P.; Efstathiou, J.A.; Groshen, S.; Hahn, N.M.; Hansel, D.; Kwiatkowski, D.; O’Donnell, M.; Rosenberg, J.; Svatek, R.; Abrams, J.S.; Al-Ahmadie, H.; Apolo, A.B.; Bellmunt, J.; Callahan, M.; Cha, E.K.; Drake, C.; Jarow, J.; Kamat, A.; Kim, W.; Knowles, M.; Mann, B.; Marchionni, L.; McConkey, D.; McShane, L.; Ramirez, N.; Sharabi, A.; Sharpe, A.H.; Solit, D.; Tangen, C.M.; Amiri, A.T.; Van Allen, E.; West, P.J.; Witjes, J.A.; Quale, D.Z. Summary and recommendations from the National Cancer Institute’s clinical trials planning meeting on novel therapeutics for non-muscle invasive bladder cancer. Bladder Cancer, 2016, 2(2), 165-202. doi: 10.3233/BLC-160053 PMID: 27376138
  10. Wang, G.; Jin, W.; Xu, Z.; Ju, L.; Shan, D.; Li, S.; Yu, M.; Cao, X.; Liu, N.; Qian, K.; Zhang, Y.; Xiao, Y.; Wang, X. Urine‐based liquid biopsy in bladder cancer: Opportunities and challenges. Clin. Transl. Discov., 2023, 3(1), e176. doi: 10.1002/ctd2.176
  11. Bhattacharjee, S.; Sullivan, M.J.; Wynn, R.R.; Demagall, A.; Hendrix, A.S.; Sindhwani, P.; Petros, F.G.; Nadiminty, N. PARP inhibitors chemopotentiate and synergize with cisplatin to inhibit bladder cancer cell survival and tumor growth. BMC Cancer, 2022, 22(1), 312. doi: 10.1186/s12885-022-09376-9 PMID: 35321693
  12. Xylinas, E. Urine markers for detection and surveillance of bladder cancer. Urol. Oncol., 2014, 32(3), 222-229. doi: 10.1016/j.urolonc.2013.06.001
  13. Cai, Q.; Wu, Y.; Guo, Z.; Gong, R.; Tang, Y.; Yang, K.; Li, X.; Guo, X.; Niu, Y.; Zhao, Y. Urine BLCA-4 exerts potential role in detecting patients with bladder cancers: A pooled analysis of individual studies. Oncotarget, 2015, 6(35), 37500-37510. doi: 10.18632/oncotarget.6061 PMID: 26462026
  14. Sexton, W.J.; Wiegand, L.R.; Correa, J.J.; Politis, C.; Dickinson, S.I.; Kang, L.C. Bladder cancer: A review of non-muscle invasive disease. Cancer Contr., 2010, 17(4), 256-268. doi: 10.1177/107327481001700406 PMID: 20861813
  15. Narayan, V.; Vaughn, D. Pharmacokinetic and toxicity considerations in the use of neoadjuvant chemotherapy for bladder cancer. Expert Opin. Drug Metab. Toxicol., 2015, 11(5), 731-742. doi: 10.1517/17425255.2015.1005600 PMID: 25604887
  16. Reesink, D.J.; van de Garde, E.M.W.; Peters, B.J.M.; van der Nat, P.B.; Los, M.; Horenblas, S.; van Melick, H.H.E. Treatment patterns and clinical outcomes of chemotherapy treatment in patients with muscle-invasive or metastatic bladder cancer in the Netherlands. Sci. Rep., 2020, 10(1), 15822. doi: 10.1038/s41598-020-72820-y PMID: 32978455
  17. Kaur, J.; Choi, W.; Geynisman, D.M.; Plimack, E.R.; Ghatalia, P. Role of immunotherapy in localized muscle invasive urothelial cancer. Ther. Adv. Med. Oncol., 2021, 13, 17588359211045858. PMID: 34567274
  18. Stenzl, A.; Cowan, N.C.; De Santis, M.; Kuczyk, M.A.; Merseburger, A.S.; Ribal, M.J.; Sherif, A.; Witjes, J.A. Treatment of muscle-invasive and metastatic bladder cancer: Update of the EAU guidelines. Eur. Urol., 2011, 59(6), 1009-1018. doi: 10.1016/j.eururo.2011.03.023 PMID: 21454009
  19. Yang, Z.; Xu, Y.; Bi, Y.; Zhang, N.; Wang, H.; Xing, T.; Bai, S.; Shen, Z.; Naz, F.; Zhang, Z.; Yin, L.; Shi, M.; Wang, L.; Wang, L.; Wang, S.; Xu, L.; Su, X.; Wu, S.; Yu, C. Immune escape mechanisms and immunotherapy of urothelial bladder cancer. J. Clin. Transl. Res., 2021, 7(4), 485-500. PMID: 34541363
  20. Wołącewicz, M.; Hrynkiewicz, R.; Grywalska, E.; Suchojad, T.; Leksowski, T.; Roliński, J.; Niedźwiedzka-Rystwej, P. Immunotherapy in bladder cancer: Current methods and future perspectives. Cancers, 2020, 12(5), 1181. doi: 10.3390/cancers12051181 PMID: 32392774
  21. Zucali, P.A.; Cordua, N.; D’Antonio, F.; Borea, F.; Perrino, M.; De Vincenzo, F.; Santoro, A. Current perspectives on immunotherapy in the peri-operative setting of muscle-infiltrating bladder cancer. Front. Oncol., 2020, 10, 568279. doi: 10.3389/fonc.2020.568279 PMID: 33194654
  22. Chi, M.; Liu, J.; Mei, C.; Shi, Y.; Liu, N.; Jiang, X.; Liu, C.; Xue, N.; Hong, H.; Xie, J.; Sun, X.; Yin, B.; Meng, X.; Wang, B. TEAD4 functions as a prognostic biomarker and triggers EMT via PI3K/AKT pathway in bladder cancer. J. Exp. Clin. Cancer Res., 2022, 41(1), 175. doi: 10.1186/s13046-022-02377-3 PMID: 35581606
  23. de Jong, J.J.; Liu, Y.; Robertson, A.G.; Seiler, R.; Groeneveld, C.S.; van der Heijden, M.S.; Wright, J.L.; Douglas, J.; Dall’Era, M.; Crabb, S.J.; van Rhijn, B.W.G.; van Kessel, K.E.M.; Davicioni, E.; Castro, M.A.A.; Lotan, Y.; Zwarthoff, E.C.; Black, P.C.; Boormans, J.L.; Gibb, E.A. Long non-coding RNAs identify a subset of luminal muscle-invasive bladder cancer patients with favorable prognosis. Genome Med., 2019, 11(1), 60. doi: 10.1186/s13073-019-0669-z PMID: 31619281
  24. Robertson, A.G.; Kim, J.; Al-Ahmadie, H.; Bellmunt, J.; Guo, G.; Cherniack, A.D.; Hinoue, T.; Laird, P.W.; Hoadley, K.A.; Akbani, R.; Castro, M.A.A.; Gibb, E.A.; Kanchi, R.S.; Gordenin, D.A.; Shukla, S.A.; Sanchez-Vega, F.; Hansel, D.E.; Czerniak, B.A.; Reuter, V.E.; Su, X.; de Sa Carvalho, B.; Chagas, V.S.; Mungall, K.L.; Sadeghi, S.; Pedamallu, C.S.; Lu, Y.; Klimczak, L.J.; Zhang, J.; Choo, C.; Ojesina, A.I.; Bullman, S.; Leraas, K.M.; Lichtenberg, T.M.; Wu, C.J.; Schultz, N.; Getz, G.; Meyerson, M.; Mills, G.B.; McConkey, D.J.; Weinstein, J.N.; Kwiatkowski, D.J.; Lerner, S.P.; Akbani, R.; Al-Ahmadie, H.; Albert, M.; Alexopoulou, I.; Ally, A.; Antic, T.; Aron, M.; Balasundaram, M.; Bartlett, J.; Baylin, S.B.; Beaver, A.; Bellmunt, J.; Birol, I.; Boice, L.; Bootwalla, M.S.; Bowen, J.; Bowlby, R.; Brooks, D.; Broom, B.M.; Bshara, W.; Bullman, S.; Burks, E.; Cárcano, F.M.; Carlsen, R.; Carvalho, B.S.; Carvalho, A.L.; Castle, E.P.; Castro, M.A.A.; Castro, P.; Catto, J.W.; Chagas, V.S.; Cherniack, A.D.; Chesla, D.W.; Choo, C.; Chuah, E.; Chudamani, S.; Cortessis, V.K.; Cottingham, S.L.; Crain, D.; Curley, E.; Czerniak, B.A.; Daneshmand, S.; Demchok, J.A.; Dhalla, N.; Djaladat, H.; Eckman, J.; Egea, S.C.; Engel, J.; Felau, I.; Ferguson, M.L.; Gardner, J.; Gastier-Foster, J.M.; Gerken, M.; Getz, G.; Gibb, E.A.; Gomez-Fernandez, C.R.; Gordenin, D.A.; Guo, G.; Hansel, D.E.; Harr, J.; Hartmann, A.; Herbert, L.M.; Hinoue, T.; Ho, T.H.; Hoadley, K.A.; Holt, R.A.; Hutter, C.M.; Jones, S.J.M.; Jorda, M.; Kahnoski, R.J.; Kanchi, R.S.; Kasaian, K.; Kim, J.; Klimczak, L.J.; Kwiatkowski, D.J.; Lai, P.H.; Laird, P.W.; Lane, B.R.; Leraas, K.M.; Lerner, S.P.; Lichtenberg, T.M.; Liu, J.; Lolla, L.; Lotan, Y.; Lu, Y.; Lucchesi, F.R.; Ma, Y.; Machado, R.D.; Maglinte, D.T.; Mallery, D.; Marra, M.A.; Martin, S.E.; Mayo, M.; McConkey, D.J.; Meraney, A.; Meyerson, M.; Mills, G.B.; Moinzadeh, A.; Moore, R.A.; Mora Pinero, E.M.; Morris, S.; Morrison, C.; Mungall, K.L.; Mungall, A.J.; Myers, J.B.; Naresh, R.; O’Donnell, P.H.; Ojesina, A.I.; Parekh, D.J.; Parfitt, J.; Paulauskis, J.D.; Sekhar Pedamallu, C.; Penny, R.J.; Pihl, T.; Porten, S.; Quintero-Aguilo, M.E.; Ramirez, N.C.; Rathmell, W.K.; Reuter, V.E.; Rieger-Christ, K.; Robertson, A.G.; Sadeghi, S.; Saller, C.; Salner, A.; Sanchez-Vega, F.; Sandusky, G.; Scapulatempo-Neto, C.; Schein, J.E.; Schuckman, A.K.; Schultz, N.; Shelton, C.; Shelton, T.; Shukla, S.A.; Simko, J.; Singh, P.; Sipahimalani, P.; Smith, N.D.; Sofia, H.J.; Sorcini, A.; Stanton, M.L.; Steinberg, G.D.; Stoehr, R.; Su, X.; Sullivan, T.; Sun, Q.; Tam, A.; Tarnuzzer, R.; Tarvin, K.; Taubert, H.; Thiessen, N.; Thorne, L.; Tse, K.; Tucker, K.; Van Den Berg, D.J.; van Kessel, K.E.; Wach, S.; Wan, Y.; Wang, Z.; Weinstein, J.N.; Weisenberger, D.J.; Wise, L.; Wong, T.; Wu, Y.; Wu, C.J.; Yang, L.; Zach, L.A.; Zenklusen, J.C.; Zhang, J.J.; Zhang, J.; Zmuda, E.; Zwarthoff, E.C. Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell, 2017, 171(3), 540-556.e25. doi: 10.1016/j.cell.2017.09.007 PMID: 28988769
  25. Wullweber, A.; Strick, R.; Lange, F.; Sikic, D.; Taubert, H.; Wach, S.; Wullich, B.; Bertz, S.; Weyerer, V.; Stoehr, R.; Breyer, J.; Burger, M.; Hartmann, A.; Strissel, P.L.; Eckstein, M. Bladder tumor subtype commitment occurs in carcinoma in situ driven by key signaling pathways including ECM remodeling. Cancer Res., 2021, 81(6), 1552-1566. doi: 10.1158/0008-5472.CAN-20-2336 PMID: 33472889
  26. Tran, L.; Xiao, J.F.; Agarwal, N.; Duex, J.E.; Theodorescu, D. Advances in bladder cancer biology and therapy. Nat. Rev. Cancer, 2021, 21(2), 104-121. doi: 10.1038/s41568-020-00313-1 PMID: 33268841
  27. Alfred Witjes, J.; Lebret, T.; Compérat, E.M.; Cowan, N.C.; De Santis, M.; Bruins, H.M.; Hernández, V.; Espinós, E.L.; Dunn, J.; Rouanne, M.; Neuzillet, Y.; Veskimäe, E.; van der Heijden, A.G.; Gakis, G.; Ribal, M.J. Updated 2016 EAU guidelines on muscle-invasive and metastatic bladder cancer. Eur. Urol., 2017, 71(3), 462-475. doi: 10.1016/j.eururo.2016.06.020 PMID: 27375033
  28. Kim, E-J. Clinical implications and prognostic values of topoisomerase-II alpha expression in primary non-muscle-invasive bladder cancer. Urology, 2010, 75(6), 1516.e9-13. doi: 10.1016/j.urology.2009.08.055
  29. Liu, J.; Zhou, S.; Li, S.; Jiang, Y.; Wan, Y.; Ma, X.; Cheng, W. Eleven genes associated with progression and prognosis of endometrial cancer (EC) identified by comprehensive bioinformatics analysis. Cancer Cell Int., 2019, 19(1), 136. doi: 10.1186/s12935-019-0859-1 PMID: 31139013
  30. Basso, K.; Margolin, A.A.; Stolovitzky, G.; Klein, U.; Dalla-Favera, R.; Califano, A. Reverse engineering of regulatory networks in human B cells. Nat. Genet., 2005, 37(4), 382-390. doi: 10.1038/ng1532 PMID: 15778709
  31. Zeng, S.; Yu, X.; Ma, C.; Song, R.; Zhang, Z.; Zi, X.; Chen, X.; Wang, Y.; Yu, Y.; Zhao, J.; Wei, R.; Sun, Y.; Xu, C. Transcriptome sequencing identifies ANLN as a promising prognostic biomarker in bladder urothelial carcinoma. Sci. Rep., 2017, 7(1), 3151. doi: 10.1038/s41598-017-02990-9 PMID: 28600503
  32. Mitra, A.P. Molecular substratification of bladder cancer: Moving towards individualized patient management. Ther. Adv. Urol., 2016, 8(3), 215-233. doi: 10.1177/1756287216638981 PMID: 27247631
  33. Liu, X.; Hu, A.X.; Zhao, J.L.; Chen, F.L. Identification of key gene modules in human osteosarcoma by co‐expression analysis weighted gene co‐expression network analysis (WGCNA). J. Cell. Biochem., 2017, 118(11), 3953-3959. doi: 10.1002/jcb.26050 PMID: 28398605
  34. Shuai, M.; He, D.; Chen, X. Optimizing weighted gene co-expression network analysis with a multi-threaded calculation of the topological overlap matrix. Stat. Appl. Genet. Mol. Biol., 2021, 20(4-6), 145-153. doi: 10.1515/sagmb-2021-0025 PMID: 34757703
  35. Ko, D.K.; Brandizzi, F. Coexpression network construction and visualization from transcriptomes underlying ER stress responses. In: Plant Proteostasis: Methods and Protocols; Springer, 2022; pp. 385-401.
  36. Wang, Y.; Liu, T.; Liu, Y.; Chen, J.; Xin, B.; Wu, M.; Cui, W. Coronary artery disease associated specific modules and feature genes revealed by integrative methods of WGCNA, MetaDE and machine learning. Gene, 2019, 710, 122-130. doi: 10.1016/j.gene.2019.05.010 PMID: 31075415
  37. Wu, J.; Liu, X.J.; Hu, J.N.; Liao, X.H.; Lin, F.F. Transcriptomics and prognosis analysis to identify critical biomarkers in invasive breast carcinoma. Technol. Cancer Res. Treat., 2020, 19, 1533033820957011. doi: 10.1177/1533033820957011 PMID: 33176622
  38. Park, Y.; Heider, D.; Hauschild, A.C. Integrative analysis of next-generation sequencing for next-generation cancer research toward artificial intelligence. Cancers, 2021, 13(13), 3148. doi: 10.3390/cancers13133148 PMID: 34202427
  39. Zhou, Z.; Liu, S.; Zhang, M.; Zhou, R.; Liu, J.; Chang, Y.; Zhao, Q. Overexpression of topoisomerase 2-alpha confers a poor prognosis in pancreatic adenocarcinoma identified by co-expression analysis. Dig. Dis. Sci., 2017, 62(10), 2790-2800. doi: 10.1007/s10620-017-4718-4 PMID: 28815403
  40. Blum, A.; Wang, P.; Zenklusen, J.C. SnapShot: TCGA-analyzed tumors. Cell, 2018, 173(2), 530. doi: 10.1016/j.cell.2018.03.059 PMID: 29625059
  41. Loeb, L.A.; Monnat, R.J., Jr DNA polymerases and human disease. Nat. Rev. Genet., 2008, 9(8), 594-604. doi: 10.1038/nrg2345 PMID: 18626473
  42. Briggs, S.; Tomlinson, I. Germline and somatic polymerase ϵ and δ mutations define a new class of hypermutated colorectal and endometrial cancers. J. Pathol., 2013, 230(2), 148-153. doi: 10.1002/path.4185 PMID: 23447401
  43. Zhang, P.; Chen, X.; Zhang, L.; Cao, D.; Chen, Y.; Guo, Z.; Chen, J. POLE2 facilitates the malignant phenotypes of glioblastoma through promoting AURKA-mediated stabilization of FOXM1. Cell Death Dis., 2022, 13(1), 61. doi: 10.1038/s41419-021-04498-7 PMID: 35039475
  44. Zhu, Y.; Chen, G.; Song, Y.; Chen, Z.; Chen, X. POLE2 knockdown reduce tumorigenesis in esophageal squamous cells. Cancer Cell Int., 2020, 20(1), 388. doi: 10.1186/s12935-020-01477-4 PMID: 32831648
  45. Liu, D.; Zhang, X.X.; Xi, B.X.; Wan, D.Y.; Li, L.; Zhou, J.; Wang, W.; Ma, D.; Wang, H.; Gao, Q.L. Sine oculis homeobox homolog 1 promotes DNA replication and cell proliferation in cervical cancer. Int. J. Oncol., 2014, 45(3), 1232-1240. doi: 10.3892/ijo.2014.2510 PMID: 24970368
  46. Li, J.; Wang, J.; Yu, J.; Zhao, Y.; Dong, Y.; Fan, Y.; Li, N.; Zhang, Y.; Wang, Y. Knockdown of POLE2 expression suppresses lung adenocarcinoma cell malignant phenotypes in vitro. Oncol. Rep., 2018, 40(5), 2477-2486. doi: 10.3892/or.2018.6659 PMID: 30132567
  47. Pearlman, A.; Rahman, M.T.; Upadhyay, K.; Loke, J.; Ostrer, H. Ectopic Otoconin 90 expression in triple negative breast cancer cell lines is associated with metastasis functions. PLoS One, 2019, 14(2), e0211737. doi: 10.1371/journal.pone.0211737 PMID: 30763339
  48. Lv, Z.; Wu, X.; Lu, P.; Xu, X.; Wang, J.; Zhang, C.; Liu, W.; Gao, Y.; Lu, C.; Zhang, Y.; Kou, H. POLE2 knockdown suppresses lymphoma progression via downregulating Wnt/β-catenin signaling pathway. Mol. Cell. Biochem., 2023, 479, 487-497. doi: 10.1007/s11010-023-04738-8 PMID: 37097331
  49. Aoki, M.; Fujishita, T. Oncogenic roles of the PI3K/AKT/mTOR axis. Curr. Top. Microbiol. Immunol., 2017, 407, 153-189. doi: 10.1007/82_2017_6 PMID: 28550454
  50. Su, Y.L.; Luo, H.L.; Huang, C.C.; Liu, T.T.; Huang, E.Y.; Sung, M.T.; Lin, J.J.; Chiang, P.H.; Chen, Y.T.; Kang, C.H.; Cheng, Y.T. Galectin-1 overexpression activates the FAK/PI3K/AKT/mTOR pathway and is correlated with upper urinary urothelial carcinoma progression and survival. Cells, 2020, 9(4), 806. doi: 10.3390/cells9040806 PMID: 32225123
  51. Yao, J.; Qian, K.; Chen, C.; Liu, X.; Yu, D.; Yan, X.; Liu, T.; Li, S. ZNF139/circZNF139 promotes cell proliferation, migration and invasion via activation of PI3K/AKT pathway in bladder cancer. Aging, 2020, 12(10), 9915-9934. doi: 10.18632/aging.103256 PMID: 32454461
  52. Pelucchi, C.; Bosetti, C.; Negri, E.; Malvezzi, M.; La Vecchia, C. Mechanisms of Disease: The epidemiology of bladder cancer. Nat. Clin. Pract. Urol., 2006, 3(6), 327-340. doi: 10.1038/ncpuro0510 PMID: 16763645
  53. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  54. Hatta, M.N.A.; Mohamad Hanif, E.A.; Chin, S.F.; Neoh, H. Pathogens and carcinogenesis: A review. Biology, 2021, 10(6), 533. doi: 10.3390/biology10060533 PMID: 34203649
  55. Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33. doi: 10.3322/caac.21708 PMID: 35020204
  56. Xia, C.; Dong, X.; Li, H.; Cao, M.; Sun, D.; He, S.; Yang, F.; Yan, X.; Zhang, S.; Li, N.; Chen, W. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin. Med. J., 2022, 135(5), 584-590. doi: 10.1097/CM9.0000000000002108 PMID: 35143424
  57. von der Maase, H.; Hansen, S.W.; Roberts, J.T.; Dogliotti, L.; Oliver, T.; Moore, M.J.; Bodrogi, I.; Albers, P.; Knuth, A.; Lippert, C.M.; Kerbrat, P.; Sanchez Rovira, P.; Wersall, P.; Cleall, S.P.; Roychowdhury, D.F.; Tomlin, I.; Visseren-Grul, C.M.; Conte, P.F. Gemcitabine and cisplatin versus methotrexate, vinblastine, doxorubicin, and cisplatin in advanced or metastatic bladder cancer: Results of a large, randomized, multinational, multicenter, phase III study. J. Clin. Oncol., 2000, 18(17), 3068-3077. doi: 10.1200/JCO.2000.18.17.3068 PMID: 11001674
  58. Aggen, D.H.; Drake, C.G. Biomarkers for immunotherapy in bladder cancer: A moving target. J. Immunother. Cancer, 2017, 5(1), 94. doi: 10.1186/s40425-017-0299-1 PMID: 29157296
  59. Flaig, T.W.; Spiess, P.E.; Agarwal, N.; Bangs, R.; Boorjian, S.A.; Buyyounouski, M.K.; Chang, S.; Downs, T.M.; Efstathiou, J.A.; Friedlander, T.; Greenberg, R.E.; Guru, K.A.; Guzzo, T.; Herr, H.W.; Hoffman-Censits, J.; Hoimes, C.; Inman, B.A.; Jimbo, M.; Kader, A.K.; Lele, S.M.; Michalski, J.; Montgomery, J.S.; Nandagopal, L.; Pagliaro, L.C.; Pal, S.K.; Patterson, A.; Plimack, E.R.; Pohar, K.S.; Preston, M.A.; Sexton, W.J.; Siefker-Radtke, A.O.; Tward, J.; Wright, J.L.; Gurski, L.A.; Johnson-Chilla, A. Bladder cancer, version 3.2020, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Canc. Netw., 2020, 18(3), 329-354. doi: 10.6004/jnccn.2020.0011 PMID: 32135513
  60. Gilyazova, I.; Enikeeva, K.; Rafikova, G.; Kagirova, E.; Sharifyanova, Y.; Asadullina, D.; Pavlov, V. Epigenetic and immunological features of bladder cancer. Int. J. Mol. Sci., 2023, 24(12), 9854. doi: 10.3390/ijms24129854 PMID: 37373000
  61. Markman, M.; Mekhail, T.M. Paclitaxel in cancer therapy. Expert Opin. Pharmacother., 2002, 3(6), 755-766. doi: 10.1517/14656566.3.6.755 PMID: 12036415
  62. Yi, L.; Wang, H.; Li, W.; Ye, K.; Xiong, W.; Yu, H.; Jin, X. The FOXM1/RNF26/p57 axis regulates the cell cycle to promote the aggressiveness of bladder cancer. Cell Death Dis., 2021, 12(10), 944. doi: 10.1038/s41419-021-04260-z PMID: 34650035
  63. Roh, Y.G.; Mun, J.Y.; Kim, S.K.; Park, W.Y.; Jeong, M.S.; Kim, T.N.; Kim, W.T.; Choi, Y.H.; Chu, I.S.; Leem, S.H. Fanconi anemia pathway activation by FOXM1 is critical to bladder cancer recurrence and anticancer drug resistance. Cancers, 2020, 12(6), 1417. doi: 10.3390/cancers12061417 PMID: 32486251
  64. Yap, D.B.S.; Hsieh, J.K.; Chan, F.S.G.; Lu, X. mdm2: A bridge over the two tumour suppressors, p53 and Rb. Oncogene, 1999, 18(53), 7681-7689. doi: 10.1038/sj.onc.1202954 PMID: 10618708
  65. Geva‐Zatorsky, N. Oscillations and variability in the p53 system. Mol. Syst. Biol., 2006, 2, 2006.0033. doi: 10.1038/msb4100068
  66. Shi, T.; Yuan, Z.; He, Y.; Zhang, D.; Chen, S.; Wang, X.; Yao, L.; Shao, J.; Wang, X. Competition between p53 and YY1 determines PHGDH expression and malignancy in bladder cancer. Cell. Oncol., 2023. doi: 10.1007/s13402-023-00823-8 PMID: 37326803
  67. Yang, Z. Down-regulation of Polo-like kinase 4 (PLK4) induces G1 arrest via activation of the p38/p53/p21 signalling pathway in bladder cancer. FEBS Open Bio, 2021, 11(9), 2631-2646.
  68. Long, X. Network-based pharmacology and in vitro validation reveal that galangin induces apoptosis in bladder cancer cells by promoting the p53 signaling pathway. Anticancer. Agents Med. Chem., 2023, 23(7), 847-857. PMID: 36305128
  69. Ye, G.; Kan, S.; Chen, J.; Lu, X. Puerarin in inducing apoptosis of bladder cancer cells through inhibiting SIRT1/p53 pathway. Oncol. Lett., 2019, 17(1), 195-200. PMID: 30655755
  70. Chen, S. ANLN serves as an oncogene in bladder urothelial carcinoma via activating JNK signaling pathway. Urol. Int., 2023, 107(3), 310-320. PMID: 35504258
  71. Wu, S.; Nitschke, K.; Heinkele, J.; Weis, C.A.; Worst, T.S.; Eckstein, M.; Porubsky, S.; Erben, P. ANLN and TLE2 in muscle invasive bladder cancer: A functional and clinical evaluation based on in silico and in vitro data. Cancers, 2019, 11(12), 1840. doi: 10.3390/cancers11121840 PMID: 31766561
  72. Wu, Z.; Wang, Y.M.; Dai, Y.; Chen, L.A. POLE2 serves as a prognostic biomarker and is associated with immune infiltration in squamous cell lung cancer. Med. Sci. Monit., 2020, 26, e921430-e921431. doi: 10.12659/MSM.921430 PMID: 32304567
  73. Ma, X.; Dong, L.; Liu, X.; Ou, K.; Yang, L. POLE/POLD1 mutation and tumor immunotherapy. J. Exp. Clin. Cancer Res., 2022, 41(1), 216. doi: 10.1186/s13046-022-02422-1 PMID: 35780178
  74. Kachrilas, S.; Dellis, A.; Papatsoris, A.; Avgeris, S.; Anastasiou, D.; Gavriil, A.; Horti, M.; Tseleni Balafouta, S.; Livadas, K.; Stravopodis, D.J.; Alivizatos, G.; Voutsinas, G.E.; Deliveliotis, C. PI3K/AKT pathway genetic alterations and dysregulation of expression in bladder cancer. J. BUON, 2019, 24(1), 329-337. PMID: 30941989
  75. Qian, Y.; Deng, J.; Xie, H.; Geng, L.; Zhou, L.; Wang, Y.; Yin, S.; Feng, X.; Zheng, S. Regulation of TLR4-induced IL-6 response in bladder cancer cells by opposing actions of MAPK and PI3K signaling. J. Cancer Res. Clin. Oncol., 2009, 135(3), 379-386. doi: 10.1007/s00432-008-0478-z PMID: 18825409

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers