A Six-gene Prognostic Model Based on Neutrophil Extracellular Traps (NETs)-related Gene Signature for Lung Adenocarcinoma


Цитировать

Полный текст

Аннотация

Background:Lung adenocarcinoma (LUAD) is one of the most common malignant cancers. Neutrophil extracellular traps (NETs) have been discovered to play a crucial role in the pathogenesis of LUAD. We aimed to establish an innovative prognostic model for LUAD based on the distinct expression patterns of NETs-related genes.

Methods:The TCGA LUAD dataset was utilized as the training set, while GSE31210, GSE37745, and GSE50081 were undertaken as the verification sets. The patients were grouped into clusters based on the expression signature of NETs-related genes. Differentially expressed genes between clusters were identified through the utilization of the random forest and LASSO algorithms. The NETs score model for LUAD prognosis was developed by multiplying the expression levels of specific genes with their corresponding LASSO coefficients and then summing them. The validity of the model was confirmed by analysis of the survival curves and ROC curves. Additionally, immune infiltration, GSEA, mutation analysis, and drug analysis were conducted. Silencing ABCC2 in A549 cells was achieved to investigate its effect.

Results:We identified six novel NETs-related genes, namely UPK1B, SFTA3, GGTLC1, SCGB3A1, ABCC2, and NTS, and developed a NETs score signature, which exhibited a significant correlation with the clinicopathological and immune traits of the LUAD patients. High-risk patients showed inhibition of immune-related processes. Mutation patterns exhibited variability among the different groups. AZD3759, lapatinib, and dasatinib have been identified as potential candidates for LUAD treatment. Moreover, the downregulation of ABCC2 resulted in the induction of apoptosis and suppression of migration and invasion in A549 cells.

Conclusion:Altogether, this study has identified a novel NET-score signature based on six novel NET-related genes to predict the prognosis of LUAD and ABCC2 and has also explored a new method for personalized chemo-/immuno-therapy of LUAD.

Об авторах

Guiyan Mo

Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University

Email: info@benthamscience.net

Xuan Long

Department of Respiratory and Critical Care Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine

Email: info@benthamscience.net

Limin Cao

Department of Respiratory Medicine, Lianyungang Second People's Hospital

Автор, ответственный за переписку.
Email: info@benthamscience.net

Yuling Tang

Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University

Email: info@benthamscience.net

Yusheng Yan

Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University

Email: info@benthamscience.net

Ting Guo

Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University

Email: info@benthamscience.net

Список литературы

  1. Ding, M.; Liao, H.; Zhou, N.; Yang, Y.; Guan, S.; Chen, L. B7-H3-induced signaling in lung adenocarcinoma cell lines with divergent epidermal growth factor receptor mutation patterns. BioMed Res. Int., 2020, 2020, 1-8. doi: 10.1155/2020/8824805 PMID: 33426073
  2. Dubray, B.; Thureau, S.; Nkhali, L.; Modzelewski, R.; Doyeux, K.; Ruan, S.; Vera, P. FDG-PET imaging for radiotherapy target volume definition in lung cancer. IRBM, 2014, 35(1), 41-45. doi: 10.1016/j.irbm.2013.12.008
  3. Zhu, J.; Ao, H.; Liu, M.; Cao, K.; Ma, J. UBE2T promotes autophagy via the p53/AMPK/mTOR signaling pathway in lung adenocarcinoma. J. Transl. Med., 2021, 19(1), 374. doi: 10.1186/s12967-021-03056-1 PMID: 34461934
  4. Zhang, L.; Huang, P.; Huang, C.; Jiang, L.; Lu, Z.; Wang, P. Varied clinical significance of ATP-binding cassette C sub-family members for lung adenocarcinoma. Medicine, 2021, 100(16), e25246. doi: 10.1097/MD.0000000000025246 PMID: 33879658
  5. Relli, V.; Trerotola, M.; Guerra, E.; Alberti, S. Abandoning the notion of non-small cell lung cancer. Trends Mol. Med., 2019, 25(7), 585-594. doi: 10.1016/j.molmed.2019.04.012 PMID: 31155338
  6. Xu, W.; Li, Y.; Yuan, W.W.; Yin, Y.; Song, W.W.; Wang, Y.; Huang, Q.Q.; Zhao, W.H.; Wu, J.Q. Membrane-bound CD40L promotes senescence and initiates senescence-associated secretory phenotype via NF-κB activation in lung adenocarcinoma. Cell. Physiol. Biochem., 2018, 48(4), 1793-1803. doi: 10.1159/000492352 PMID: 30078020
  7. Sui, Q.; Chen, Z.; Hu, Z.; Huang, Y.; Liang, J.; Bi, G.; Bian, Y.; Zhao, M.; Zhan, C.; Lin, Z.; Wang, Q.; Tan, L. Cisplatin resistance-related multi-omics differences and the establishment of machine learning models. J. Transl. Med., 2022, 20(1), 171. doi: 10.1186/s12967-022-03372-0 PMID: 35410350
  8. Zhang, H.; Cao, Y.; Tang, J.; Wang, R. CD73 (NT5E) promotes the proliferation and metastasis of lung adenocarcinoma through the EGFR/AKT/mTOR pathway. BioMed Res. Int., 2022, 2022, 1-12. doi: 10.1155/2022/9944847 PMID: 35813221
  9. Hinshaw, D.C.; Shevde, L.A. The tumor microenvironment innately modulates cancer progression. Cancer Res., 2019, 79(18), 4557-4566. doi: 10.1158/0008-5472.CAN-18-3962 PMID: 31350295
  10. Yang, L.; He, Y.T.; Dong, S.; Wei, X.W.; Chen, Z.H.; Zhang, B.; Chen, W.D.; Yang, X.R.; Wang, F.; Shang, X.M.; Zhong, W.Z.; Wu, Y.L.; Zhou, Q. Single-cell transcriptome analysis revealed a suppressive tumor immune microenvironment in EGFR mutant lung adenocarcinoma. J. Immunother. Cancer, 2022, 10(2), e003534. doi: 10.1136/jitc-2021-003534 PMID: 35140113
  11. Shen, Y.; Li, D.; Liang, Q.; Yang, M.; Pan, Y.; Li, H. Cross-talk between cuproptosis and ferroptosis regulators defines the tumor microenvironment for the prediction of prognosis and therapies in lung adenocarcinoma. Front. Immunol., 2023, 13, 1029092. doi: 10.3389/fimmu.2022.1029092 PMID: 36733399
  12. Bejarano, L. Jordāo, M.J.C.; Joyce, J.A. Therapeutic targeting of the tumor microenvironment. Cancer Discov., 2021, 11(4), 933-959. doi: 10.1158/2159-8290.CD-20-1808 PMID: 33811125
  13. He, D.; Wang, D.; Lu, P.; Yang, N.; Xue, Z.; Zhu, X.; Zhang, P.; Fan, G. Single-cell RNA sequencing reveals heterogeneous tumor and immune cell populations in early-stage lung adenocarcinomas harboring EGFR mutations. Oncogene, 2021, 40(2), 355-368. doi: 10.1038/s41388-020-01528-0 PMID: 33144684
  14. Zhao, J.; Jin, J. Neutrophil extracellular traps: New players in cancer research. Front. Immunol., 2022, 13, 937565. doi: 10.3389/fimmu.2022.937565 PMID: 36059520
  15. Belli, C.; Trapani, D.; Viale, G.; D’Amico, P.; Duso, B.A.; Della Vigna, P.; Orsi, F.; Curigliano, G. Targeting the microenvironment in solid tumors. Cancer Treat. Rev., 2018, 65, 22-32. doi: 10.1016/j.ctrv.2018.02.004 PMID: 29502037
  16. Ancey, P.B.; Contat, C.; Boivin, G.; Sabatino, S.; Pascual, J.; Zangger, N.; Perentes, J.Y.; Peters, S.; Abel, E.D.; Kirsch, D.G.; Rathmell, J.C.; Vozenin, M.C.; Meylan, E. GLUT1 expression in tumor-associated neutrophils promotes lung cancer growth and resistance to radiotherapy. Cancer Res., 2021, 81(9), 2345-2357. doi: 10.1158/0008-5472.CAN-20-2870 PMID: 33753374
  17. Ali, S.G.; Shehwar, D.; Alam, M.R. Mitoxantrone inhibits FMLP-induced degenerative changes in human neutrophils. Mol. Biol., 2021, 55(5), 858-869. doi: 10.31857/S0026898421050025 PMID: 34671008
  18. Kaltenmeier, C.; Yazdani, H.O.; Morder, K.; Geller, D.A.; Simmons, R.L.; Tohme, S. Neutrophil extracellular traps promote T cell exhaustion in the tumor microenvironment. Front. Immunol., 2021, 12, 785222. doi: 10.3389/fimmu.2021.785222 PMID: 34899751
  19. Arroyo, R.; Khan, M.A.; Echaide, M.; Pérez-Gil, J.; Palaniyar, N. SP-D attenuates LPS-induced formation of human neutrophil extracellular traps (NETs), protecting pulmonary surfactant inactivation by NETs. Commun. Biol., 2019, 2(1), 470. doi: 10.1038/s42003-019-0662-5 PMID: 31872075
  20. Hu, W. Neutrophil extracellular traps facilitate cancer metastasis: cellular mechanisms and therapeutic strategies. J. Cancer Res. Clin. Oncol., 2023, 149(5), 2191-2210. PMID: 36050539
  21. Zhang, Y.; Guo, L.; Dai, Q.; Shang, B.; Xiao, T.; Di, X.; Zhang, K.; Feng, L.; Shou, J.; Wang, Y. A signature for pan-cancer prognosis based on neutrophil extracellular traps. J. Immunother. Cancer, 2022, 10(6), e004210. doi: 10.1136/jitc-2021-004210 PMID: 35688556
  22. Kwak, S.B.; Kim, S.J.; Kim, J.; Kang, Y.L.; Ko, C.W.; Kim, I.; Park, J.W. Tumor regionalization after surgery: Roles of the tumor microenvironment and neutrophil extracellular traps. Exp. Mol. Med., 2022, 54(6), 720-729. doi: 10.1038/s12276-022-00784-2 PMID: 35764882
  23. Herre, M.; Cedervall, J.; Mackman, N.; Olsson, A.K. Neutrophil extracellular traps in the pathology of cancer and other inflammatory diseases. Physiol. Rev., 2023, 103(1), 277-312. doi: 10.1152/physrev.00062.2021 PMID: 35951483
  24. Wang, Y.; Liu, F.; Chen, L.; Fang, C.; Li, S.; Yuan, S.; Qian, X.; Yin, Y.; Yu, B.; Fu, B.; Zhang, X.; Li, Y. Neutrophil Extracellular Traps (NETs) promote non-small cell lung cancer metastasis by suppressing lncrna mir503hg to activate the NF-κB/NLRP3 inflammasome pathway. Front. Immunol., 2022, 13, 867516. doi: 10.3389/fimmu.2022.867516 PMID: 35707534
  25. Wang, X.; Li, M.; Peng, L.; Tang, N. SOD2 promotes the expression of ABCC2 through lncRNA CLCA3p and improves the detoxification capability of liver cells. Toxicol. Lett., 2020, 327, 9-18. doi: 10.1016/j.toxlet.2020.03.013 PMID: 32201199
  26. Chen, Y.; Zhou, H.; Yang, S.; Su, D. Increased ABCC2 expression predicts cisplatin resistance in non‐small cell lung cancer. Cell Biochem. Funct., 2021, 39(2), 277-286. doi: 10.1002/cbf.3577 PMID: 32815556
  27. Mayakonda, A.; Lin, D.C.; Assenov, Y.; Plass, C.; Koeffler, H.P. Maftools: Efficient and comprehensive analysis of somatic variants in cancer. Genome Res., 2018, 28(11), 1747-1756. doi: 10.1101/gr.239244.118 PMID: 30341162
  28. Maeser, D.; Gruener, R.F.; Huang, R.S. oncoPredict: An R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data. Brief. Bioinform., 2021, 22(6), bbab260. doi: 10.1093/bib/bbab260 PMID: 34260682
  29. Li, Q.; Chen, W.; Li, Q.; Mao, J.; Chen, X. A novel neutrophil extracellular trap signature to predict prognosis and immunotherapy response in head and neck squamous cell carcinoma. Front. Immunol., 2022, 13, 1019967. doi: 10.3389/fimmu.2022.1019967 PMID: 36225931
  30. Zhou, M.; Zhang, X.; Li, T.; Chen, Y. Dysregulated ferroptosis‐related genes indicate potential clinical benefits for anti–PD‐1/PD‐L1 immunotherapy in lung adenocarcinoma. J. Clin. Lab. Anal., 2021, 35(12), e24086. doi: 10.1002/jcla.24086 PMID: 34752672
  31. Lee, W.; Kim, D.K.; Synn, C.B.; Lee, H.K.; Park, S.; Jung, D.S.; Choi, Y.; Kim, J.H.; Byeon, Y.; Kim, Y.S.; Lee, S.; Lee, S.; Joo, Y.; Lee, E.J.; Yun, M.R.; Heo, S.G.; Yang, W.; Jung, J.E.; Kim, E.K.; Park, J.; Park, J.D.; Lee, D.J.; Kim, H.W.; Lim, S.M.; Hong, M.H.; Ahn, B.C.; Lee, J.B.; Pyo, K.H. Incorporation of SKI-G-801, a novel AXL inhibitor, with anti-PD-1 plus chemotherapy improves anti-tumor activity and survival by enhancing T cell immunity. Front. Oncol., 2022, 12, 821391. doi: 10.3389/fonc.2022.821391 PMID: 35356198
  32. Yu, W.D.; Sun, G.; Li, J.; Xu, J.; Wang, X. Mechanisms and therapeutic potentials of cancer immunotherapy in combination with radiotherapy and/or chemotherapy. Cancer Lett., 2019, 452, 66-70. doi: 10.1016/j.canlet.2019.02.048 PMID: 30902563
  33. Castillo, V.F.; Masoomian, M.; Trpkov, K.; Downes, M.; Brimo, F.; van der Kwast, T.; Yousef, G.M.; Zakhary, A.; Rotondo, F.; Saad, G.; Nguyen, V.; Kidanewold, W.; Streutker, C.; Rowsell, C.; Hamdani, M.; Saleeb, R.M. ABCC2 brush‐border expression predicts outcome in papillary renal cell carcinoma: A multi‐institutional study of 254 cases. Histopathology, 2023, 83(6), 949-958. doi: 10.1111/his.15042 PMID: 37680023
  34. Chaikh, A.; Giraud, J.Y.; Balosso, J. Effect of the modification of CT scanner calibration curves on dose using density correction methods for chest cancer. IRBM, 2014, 35(5), 255-261. doi: 10.1016/j.irbm.2014.06.002
  35. Wischhusen, J.; Padilla, F. Ultrasound molecular imaging with targeted microbubbles for cancer diagnostics: From bench to bedside. IRBM, 2019, 40(1), 3-9. doi: 10.1016/j.irbm.2018.10.007
  36. Zhu, K.; Yan, A.; Zhou, F.; Zhao, S.; Ning, J.; Yao, L.; Shang, D.; Chen, L. A pyroptosis-related signature predicts overall survival and immunotherapy responses in lung adenocarcinoma. Front. Genet., 2022, 13, 891301. doi: 10.3389/fgene.2022.891301 PMID: 35795208
  37. Trabelsi, N.; Setti, N.; Said, R.; Ouerhani, S. Notch pathway: Bioinformatic analysis of related transcription factors within bladder cancer types and subtypes. IRBM, 2018, 39(4), 261-267. doi: 10.1016/j.irbm.2018.07.001
  38. Sun, J.; Liu, Q.; Wang, Y.; Wang, L.; Song, X.; Zhao, X. Five-year prognosis model of esophageal cancer based on genetic algorithm improved deep neural network. IRBM, 2023, 44(3), 100748. doi: 10.1016/j.irbm.2022.100748
  39. Reiswich, V.; Akdeniz, G.; Lennartz, M.; Menz, A.; Chirico, V.; Hube-Magg, C.; Fraune, C.; Bernreuther, C.; Simon, R.; Clauditz, T.S.; Sauter, G.; Uhlig, R.; Hinsch, A.; Kind, S.; Jacobsen, F.; Möller, K.; Steurer, S.; Minner, S.; Burandt, E.; Marx, A.H.; Lebok, P.; Krech, T.; Dum, D. Large-scale human tissue analysis identifies Uroplakin 1b as a putative diagnostic marker in surgical pathology. Hum. Pathol., 2022, 126, 108-120. doi: 10.1016/j.humpath.2022.05.002 PMID: 35550834
  40. Zukauskas, A.; Mrsny, R.J.; Cortés Barrantes, P.; Turner, J.R.; Leong, J.M.; McCormick, B.A. Transporters MRP1 and MRP2 regulate opposing inflammatory signals to control transepithelial neutrophil migration during streptococcus pneumoniae lung infection. MSphere, 2018, 3(4), e00303-e00318. doi: 10.1128/mSphere.00303-18 PMID: 29976647
  41. Moody, T.W.; Ramos-Alvarez, I.; Jensen, R.T. Adding of neurotensin to non-small cell lung cancer cells increases tyrosine phosphorylation of HER3. Peptides, 2022, 156, 170858. doi: 10.1016/j.peptides.2022.170858 PMID: 35932909
  42. Xiao, P.; Long, X.; Zhang, L.; Ye, Y.; Guo, J.; Liu, P.; Zhang, R.; Ning, J.; Yu, W.; Wei, F.; Yu, J. Neurotensin/IL-8 pathway orchestrates local inflammatory response and tumor invasion by inducing M2 polarization of Tumor-Associated macrophages and epithelial-mesenchymal transition of hepatocellular carcinoma cells. OncoImmunology, 2018, 7(7), e1440166. doi: 10.1080/2162402X.2018.1440166 PMID: 29900041
  43. Costa, A.L.; Moreira-Barbosa, C.; Lobo, J.; Vilela-Salgueiro, B.; Cantante, M.; Guimarães, R.; Lopes, P.; Braga, I.; Oliveira, J.; Antunes, L.; Henrique, R.; Jerónimo, C. DNA methylation profiling as a tool for testicular germ cell tumors subtyping. Epigenomics, 2018, 10(12), 1511-1523. doi: 10.2217/epi-2018-0034 PMID: 30418048
  44. Callahan, C.L.; Bonner, M.R.; Nie, J.; Wang, Y.; Tao, M.H.; Shields, P.G.; Marian, C.; Eng, K.H.; Trevisan, M.; Freudenheim, J.L. Active and secondhand smoke exposure throughout life and DNA methylation in breast tumors. Cancer Causes Control, 2019, 30(1), 53-62. doi: 10.1007/s10552-018-1102-4 PMID: 30617699
  45. Sayan, M.; Ozkan, D.; Kankoc, A.; Tombul, I.; Celik, A.; Kurul, I.C.; Tastepe, A.I. Is gamma-glutamyl transferase a prognostic indicator for early-stage lung cancer treated surgically? Wiad. Lek., 2021, 74(8), 1804-1808. doi: 10.36740/WLek202108105 PMID: 34537724
  46. Chae, Y.K.; Choi, W.M.; Bae, W.H.; Anker, J.; Davis, A.A.; Agte, S.; Iams, W.T.; Cruz, M.; Matsangou, M.; Giles, F.J. Overexpression of adhesion molecules and barrier molecules is associated with differential infiltration of immune cells in non-small cell lung cancer. Sci. Rep., 2018, 8(1), 1023. doi: 10.1038/s41598-018-19454-3 PMID: 29348685
  47. Morales, A.; Orkisz, M.; Richard, J-C.; Hernández, M. Lung segmentation by cascade registration. IRBM, 2017, 38(5), 266-280. doi: 10.1016/j.irbm.2017.07.003
  48. Hao, D.; Han, G.; Sinjab, A.; Gomez-Bolanos, L.I.; Lazcano, R.; Serrano, A.; Hernandez, S.D.; Dai, E.; Cao, X.; Hu, J.; Dang, M.; Wang, R.; Chu, Y.; Song, X.; Zhang, J.; Parra, E.R.; Wargo, J.A.; Swisher, S.G.; Cascone, T.; Sepesi, B.; Futreal, A.P.; Li, M.; Dubinett, S.M.; Fujimoto, J.; Solis Soto, L.M.; Wistuba, I.I.; Stevenson, C.S.; Spira, A.; Shalapour, S.; Kadara, H.; Wang, L. The single-cell immunogenomic landscape of B and plasma cells in early-stage lung adenocarcinoma. Cancer Discov., 2022, 12(11), 2626-2645. doi: 10.1158/2159-8290.CD-21-1658 PMID: 36098652
  49. Stokes, K.L.; Cortez-Retamozo, V.; Acosta, J.; Lauderback, B.; Robles-Oteiza, C.; Cicchini, M.; Pittet, M.J.; Feldser, D.M. Natural killer cells limit the clearance of senescent lung adenocarcinoma cells. Oncogenesis, 2019, 8(4), 24. doi: 10.1038/s41389-019-0133-3 PMID: 30936429
  50. Scozzi, D.; Wang, X.; Liao, F.; Liu, Z.; Zhu, J.; Pugh, K.; Ibrahim, M.; Hsiao, H.M.; Miller, M.J.; Yizhan, G.; Mohanakumar, T.; Krupnick, A.S.; Kreisel, D.; Gelman, A.E. Neutrophil extracellular trap fragments stimulate innate immune responses that prevent lung transplant tolerance. Am. J. Transplant., 2019, 19(4), 1011-1023. doi: 10.1111/ajt.15163 PMID: 30378766
  51. Fang, Q.; Stehr, A.M.; Naschberger, E.; Knopf, J.; Herrmann, M.; Stürzl, M. No NETs no TIME: Crosstalk between neutrophil extracellular traps and the tumor immune microenvironment. Front. Immunol., 2022, 13, 1075260. doi: 10.3389/fimmu.2022.1075260 PMID: 36618417
  52. Li, L.; Yu, X.; Liu, J.; Wang, Z.; Li, C.; Shi, J.; Sun, L.; Liu, Y.; Zhang, F.; Chen, H.; Zheng, W. Neutrophil extracellular traps promote aberrant macrophages activation in behçet’s disease. Front. Immunol., 2021, 11, 590622. doi: 10.3389/fimmu.2020.590622 PMID: 33633724
  53. Theyab, A.; Algahtani, M.; Alsharif, K.F.; Hawsawi, Y.M.; Alghamdi, A.; Alghamdi, A.; Akinwale, J. New insight into the mechanism of granulocyte colony-stimulating factor (G-CSF) that induces the mobilization of neutrophils. Hematology, 2021, 26(1), 628-636. doi: 10.1080/16078454.2021.1965725 PMID: 34494505
  54. Mouchemore, K.A.; Anderson, R.L. Immunomodulatory effects of G-CSF in cancer: therapeutic implications. Semin. Immunol., 2021, 54, 101512. doi: 10.1016/j.smim.2021.101512 PMID: 34763974
  55. Lee, C.H.; Lin, S.H.; Chang, S.F.; Chang, P.Y.; Yang, Z.P.; Lu, S.C. Extracellular signal-regulated kinase 2 mediates the expression of granulocyte colony-stimulating factor in invasive cancer cells. Oncol. Rep., 2013, 30(1), 419-424. doi: 10.3892/or.2013.2463 PMID: 23674093
  56. Passaro, A.; Mok, T.; Peters, S.; Popat, S.; Ahn, M.J.; de Marinis, F. Recent advances on the role of EGFR tyrosine kinase inhibitors in the management of NSCLC with uncommon, non exon 20 insertions, EGFR mutations. J. Thorac. Oncol., 2021, 16(5), 764-773. doi: 10.1016/j.jtho.2020.12.002 PMID: 33333327
  57. Zhao, R.; Yin, W.; Yu, Q.; Mao, Y.; Deng, Q.; Zhang, K.; Ma, S. AZD3759 enhances radiation effects in non-small-cell lung cancer by a synergistic blockade of epidermal growth factor receptor and Janus kinase-1. Bioengineered, 2022, 13(1), 331-344. doi: 10.1080/21655979.2021.2001238 PMID: 34738874
  58. Du, X.; Yang, B.; An, Q.; Assaraf, Y.G.; Cao, X.; Xia, J. Acquired resistance to third-generation EGFR-TKIs and emerging next-generation EGFR inhibitors. Innovation, 2021, 2(2), 100103. doi: 10.1016/j.xinn.2021.100103 PMID: 34557754
  59. Redin, E.; Garmendia, I.; Lozano, T.; Serrano, D.; Senent, Y.; Redrado, M.; Villalba, M.; De Andrea, C.E.; Exposito, F.; Ajona, D.; Ortiz-Espinosa, S.; Remirez, A.; Bertolo, C.; Sainz, C.; Garcia-Pedrero, J.; Pio, R.; Lasarte, J.; Agorreta, J.; Montuenga, L.M.; Calvo, A. SRC family kinase (SFK) inhibitor dasatinib improves the antitumor activity of anti-PD-1 in NSCLC models by inhibiting Treg cell conversion and proliferation. J. Immunother. Cancer, 2021, 9(3), e001496. doi: 10.1136/jitc-2020-001496 PMID: 33658304
  60. Ding, W.; Li, B.; Zhang, Y.; He, L.; Su, J. A neutrophil extracellular traps-associated lncRNA signature predicts the clinical outcomes in patients with lung adenocarcinoma. Front. Genet., 2022, 13, 1047231. doi: 10.3389/fgene.2022.1047231 PMID: 36419832

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024